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“Remember that all models are wrong, 

but some are useful.” 

G.E.P. Box 

 

“The purpose of computing is insight, not numbers.” 

R. Hamming 

 

 



 

 

 

 

 

 

 

 

  



 

Forward 

 

 

Most heat transfer problems are complex, in the sense that in most cases there are no analytical 

(exact) solutions to obtain temperature fields or heat transfer rates/coefficients. Thermal energy 

systems, and in general energy systems, involve heat transfer processes and, therefore, also 

require approximate solutions. 

The approximate solution to non-linear systems of algebraic equations or differential equations 

is typically obtained with numerical methods, which became increasingly popular with the 

advent of affordable and fast computing. Second generation computer programs, such as 

Engineering Equation Solver (EES), do not even require conventional computer programming 

to solve mathematical problems, being based on the use of internal algorithms.  

The simulation of heat transfer processes and thermal energy systems widely benefits from such 

tools, allowing fast approximate solutions, and also the study of alternative processes/systems 

through the use of parametric analyses. This book is dedicated to the numerical simulation of 

thermal energy systems, with the use of the EES software tool. 

However, prior to the use of software tools, problem analysis is fundamental, in order to decide 

which type of model and degree of accuracy is acceptable. In this book, several heat transfer 

and thermal system problems are presented, coming from the energy engineering practice. After 

problem analysis and discussion, a numerical model is applied and solutions are obtained with 

the use of EES. Computed results are discussed, always trying to assess the effect of model 

assumptions on the results, and obtain conclusions which might be useful for the design of those 

systems. 

The book starts by revisiting some well-known numerical methods to solve equations that 

appear on most practical cases (chapter 1). Global and distributed models are distinguished. In 

the case of distributed models, the finite volumes approach is favoured. A brief presentation of 

the EES software follows (chapter 2); however, this book does not replace the software manual, 

and it is advisable that the reader has some prior experience of EES. Chapters 3 and 4 present 

several examples of thermal system modelling, with chapter 3 dedicated to global modelling 

and chapter 4 to distributed modelling. 

 

 

Porto, May 2024  

 

 

Armando C. F. C. Oliveira 
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List of Symbols   

Symbols are the simplified image of known physical quantities and are fundamental to write 

equations. In this text a set of symbols similar to those found in heat transfer literature was 

adopted. Relatively to most English language literature there are however a few differences: 

the main one is related to the heat flux and heat transfer rate, with the use of 𝒒̇ and 𝑸̇, 

respectively, and where the dot represents heat per unit time (thermal power).  

 

Roman letters 

Symbol Designation Unit 

𝐴 Area m2 

𝑐𝑝  Specific heat at constant pressure J/(kgK) or J/(kgºC) 

𝐷 Diameter 

or Mass diffusion coefficient 

m 

m2/s 

F Function 

 

- 

- 

f Function 

or Friction factor 

- 

- 

𝑔 Gravity acceleration m/s2 

𝑔̇ Heat rate source per unit volume W/m3 

𝐻 Height m 

ℎ; ℎ̅  Convection coefficient or heat transfer coefficient 

or Enthalpy; 

Average coefficient over a given area/surface 

W/(m2K) or W/(m2°C) 

J/kg 

W/(m2K) or W/(m2°C) 

𝐼 Incident radiation W/m2 

K Local pressure loss coefficient - 

𝑘 Thermal conductivity W/(mK) or W/(m°C) 

𝐿 Length 

or reference dimension 

m 

𝑀 Mass kg 

𝑀̇ Mass flow rate kg/s 

𝑚̇ Mass flow rate per unit area kg/s/m2 

𝑁𝑢; 𝑁𝑢̅̅ ̅̅   Nusselt number; Nu average value - 

𝑃 Power W 

𝑝 Pressure N/m2 or Pa 

𝑃𝑟 Prandtl number - 

𝑄 Heat J 

𝑄̇ Heat transfer rate W 

𝑞̇ Heat flux (heat transfer rate per unit area) W/m2 

𝑅 Thermal resistance K/W or ºC/W 

𝑟 Radial space coordinate 

or Radius 

m 

𝑅𝑎 Rayleigh number - 



 

 

𝑅𝑒 Reynolds number - 

S Section area m2 

𝑠 Arc length 

or Spacing 

m 

𝑇; 𝑇̅  Temperature; AverageTemperature K or ºC 

𝑡 Time s 

𝑈 Overall heat transfer coefficient W/(m2K) or W/(m2°C) 

𝑉 Volume m3 

𝑣 Velocity m/s 

𝑣̅ Average Velocity m/s 

w Width m 

wf Weighting factor - 

𝑥 Space coordinate 

or Independent variable in a function 

m 

depending on associated variable 

𝑦 Space coordinate 

or Dependent variable in a function 

m 

depending on associated variable 

𝑧 Space coordinate m 

 

 

Greek letters 

  

Symbol Designation Unit 

𝛼 Thermal diffusivity 

or Absorption coefficient  

m2/s 

- 

𝛽 Thermal expansion coefficient  K-1 or ºC-1 

∆ Variation depending on associated variable 

𝛿 Boundary layer thickness m 

𝜀 Error 

or Heat exchange efficiency 

depending on associated variable 

- or % 

𝜂 Efficiency - or % 

𝜃 Angle, or Circumferential space coordinate  rad 

𝜇 Dynamic viscosity kg/(s m) 

𝜈 Kinematic viscosity m2/s 

𝜌 Specific mass 

or Reflexion coefficient 

kg/m3 

- 

𝜎 Stefan-Boltzmann constant W/(m2K4) 

𝜏 Transmission coefficient - 

𝜙 Angle, or Circumferential space coordinate; 

Relative humidity 

rad 

- or % 

Ψ  Physical property depending on specific property 

𝜔 Absolute humidity kgwater/kgdry air 

  



  

 

Subscripts*    /   Superscripts  

Script Designation 

𝑎𝑏𝑠 relative to absorption of radiation 

𝑎𝑚𝑏 ambient 

𝑏 base 

𝑐 characteristic, or corrected 

𝑐𝑜𝑛𝑑 conductive 

𝑐𝑜𝑛𝑣 convective 

𝑒𝑚 relative to emission of radiation 

evap evaporation 

ext external 

h hydraulic 

𝑖 initial 

or iteration number 

or node number associated to space coordinate 

𝑖𝑛 inlet 

𝑖𝑛𝑐 relative to incident radiation 

𝑖𝑛𝑡 internal  

j node number associated to space coordinate 

𝑙 liquid 

𝑚 mass 

n normal (to a surface) 

𝑜𝑢𝑡 outlet 

𝑟𝑎𝑑 radiative 

𝑠 section 

𝑠𝑎𝑡 saturation 

sf solid-fluid interface 

𝑠𝑜𝑙 relative to solar radiation 

𝑠𝑢𝑟 surface 

𝑡 (superscript) at time 𝑡 

𝑡 + ∆𝑡 (superscript) at time 𝑡 + ∆𝑡  

𝑡𝑜𝑡 total 

𝑡𝑟𝑎𝑛𝑠 relative to radiation transmission 

v vapour 

𝑥 x coordinate/direction 

𝑦 y coordinate/direction 

∞ far from surface (solid wall) 

* these are general subscripts; in several practical examples more specific ones are used (not listed here) 
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1 Numerical methods 

This chapter revisits some well-known numerical methods to solve equations that appear on 

thermal engineering practical cases. It starts with methods to solve non-linear equations. After 

distinguishing global and distributed models, some numerical integration methods are 

presented, applicable to steady-state and dynamic cases. For distributed models, the finite 

volumes method is favoured. 

1.1 Solution of non-linear equations 

The solution of a non-linear algebraic equation generally requires an iterative procedure. Two 

of the most used methods are the simple-iteration and the Newton-Raphson methods. The 

corresponding methods for non-linear equation sets are also presented. 

1.1.1 Simple-iteration and Newton-Raphson methods 

The simple-iteration method requires the equation to obtain the unknown value (x) in the form: 

𝑥 = 𝑓(𝑥)                                     (1.1) 

The iterative process is started with an initial or guess value (𝑥0); then a better solution is 

obtained with 

𝑥1 = 𝑓(𝑥0)                                     (1.2) 

and the process is continued for more iterations: 

𝑥𝑖+1 = 𝑓(𝑥𝑖)                                     (1.3) 

where i denotes the iteration number. The process is continued in the expectation that after some 

iterations the difference between 𝑥𝑖+1 and 𝑥𝑖 is very small. If this happens the process is stopped 

and 𝑥𝑖+1 is considered to be the solution with an error smaller than |𝑥𝑖+1 − 𝑥𝑖|. However, in 

some cases the convergence to a solution does not happen. This depends both on the function 

(f ) and on the initial guess (𝑥0). 

Consider the two functions in Figure 1.1. In Figure 1.1(a) the function 𝑓(𝑥) has increasing y 

values – positive derivative – and in Figure 1.1(b) decreasing y values – negative derivative. In 

both cases the process is converging to a solution (𝑥𝑠𝑜𝑙). In the case of Figure 1.1(b) the iteration 

results are alternately located to the left and to the right of the solution, but always approaching 

(in module) the solution. 

However, not all cases are successful. For the cases in Figure 1.2 no convergence is obtained, 

due to the function high derivative values (steep curves). 
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a                                                                     b 

Figure 1.1 – Graphical representation of the simple-iteration method to obtain the solution of x = f (x):                          

(a) function with positive derivative (increasing y); (b) function with negative derivative 

(decreasing y). 

 

 

 

 

 

 

 

 

a                                                                     b 

Figure 1.2 – Graphical representation of the simple-iteration method to obtain the solution of x = f (x):                          

(a) function with positive derivative (increasing y); (b) function with negative derivative 

(decreasing y). 

 

In fact, it is a sufficient condition of convergence that 

|𝑓′(𝑥𝑖)| < 1                                     (1.4) 

which means that low derivative values will lead to convergence. However, even with high 

values convergence may occur (the condition in equation (1.4) is not a necessary condition). 

Another method to solve non-linear equations is the Newton-Raphson method. It is also an 

iterative method, with the equation to solve written in the form: 

𝐹(𝑥) = 0                                     (1.5) 

Starting with an initial guess value, the value for the next iteration is obtained from the previous 

iteration one and the function derivative (𝐹′). The relationship between 2 consecutive iteration 

values may be obtained through 

𝐹(𝑥𝑖)

𝐹′(𝑥𝑖)
≅ 𝑥𝑖 − 𝑥𝑖+1                                    (1.6) 

which is graphically represented in Figure 1.3 – the tangent to F at 𝑥𝑖 is used.  
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Figure 1.3 – Graphical representation of the iterative process in the Newton-Raphson method. 

The same relationship of equation (1.6) may be obtained using the Taylor series expansion 

(with only the first order derivative): 

𝐹(𝑥𝑖+1) ≅ 𝐹(𝑥𝑖) +
𝜕𝐹

𝜕𝑥
|

𝑥𝑖

∙ (𝑥𝑖+1 − 𝑥𝑖) = 𝐹(𝑥𝑖) + 𝐹′(𝑥𝑖) ∙ (𝑥𝑖+1 − 𝑥𝑖)                         (1.7) 

and imposing that 𝐹(𝑥𝑖+1) becomes 0. 

Although this method gives no guarantee of convergence, it is usually more efficient than the 

simple-iteration method, converging in more cases and with less iterations. But it requires the 

calculation of the derivative (𝐹′) in each iteration. Its success also depends on the initial guess 

value and function F. 

1.1.2 Equation sets: Gauss-Seidel and Newton Raphson methods 

Most energy/thermal systems have several components, and their numerical models involve 

several equations with several unknowns (independent variables – 𝑥1, 𝑥2, … , 𝑥𝑛). Generally, the 

equations are not linear. Therefore, the solution of a set of non-linear algebraic equations is 

required. Two methods are described, which correspond to the methods seen in 1.1.1, extended 

to more than one variable/equation. 

The Gauss-Seidel method is an extension to equation sets of the simple-iteration method for 

single equations. The equation set is represented as 

 𝑥1 = 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛)                                      

 𝑥2 = 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛)                                                                                                (1.8) 

 

               𝑥𝑛 = 𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛)  

and the successive iterations are defined by      

 𝑥1𝑖+1
= 𝑓1( 𝑥1𝑖

,  𝑥2𝑖
, … ,  𝑥𝑛𝑖

)                                      

 𝑥2𝑖+1
= 𝑓2( 𝑥1𝑖

,  𝑥2𝑖
, … ,  𝑥𝑛𝑖

)                                                                                                (1.9) 

 

               𝑥𝑛𝑖+1
= 𝑓𝑛( 𝑥1𝑖

,  𝑥2𝑖
, … ,  𝑥𝑛𝑖

)  

…
 

…
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In each iteration the new values of the 𝑥𝑛 variables are calculated independently, that is, the 

solution of independent non-linear single equations is repeated for the n equations. As in the 

simple-iteration method, the process is repeated until convergence of the values of all n 

variables. 

The Newton-Raphson method for non-linear equation sets is also an extension of the method 

for non-linear single equations (keeping the same name). The equations are written as 

𝐹1(𝑥1, 𝑥2, … , 𝑥𝑛) = 0                                      

𝐹2(𝑥1, 𝑥2, … , 𝑥𝑛) = 0                                                                                                    (1.10) 

 

               𝐹𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 0  

and the first order Taylor series expansion for each function is 

𝐹(𝑥1𝑖+1
,  … ,  𝑥𝑛𝑖+1

) ≅ 𝐹(𝑥1𝑖
, 𝑥2𝑖

, … , 𝑥𝑛𝑖
) +

𝜕𝐹

𝜕𝑥1
|

𝑖
∙ (𝑥1𝑖+1

− 𝑥1𝑖
) +

                   +
𝜕𝐹

𝜕𝑥2
|

𝑖
∙ (𝑥2𝑖+1

− 𝑥2𝑖
) + ⋯ +

𝜕𝐹

𝜕𝑥𝑛
|

𝑖
∙ (𝑥𝑛𝑖+1

− 𝑥𝑛𝑖
)              (1.11) 

Using the expansion for all equations and imposing that 𝐹(𝑥1𝑖+1
,  … ,  𝑥𝑛𝑖+1

) becomes zero, the 

following set of equations is found 

−𝐹1(𝑥1𝑖
, 𝑥2𝑖

, … , 𝑥𝑛𝑖
) =

𝜕𝐹1

𝜕𝑥1
|

𝑖
∙ (𝑥1𝑖+1

− 𝑥1𝑖
) + ⋯ +

𝜕𝐹1

𝜕𝑥𝑛
|

𝑖
∙ (𝑥𝑛𝑖+1

− 𝑥𝑛𝑖
)                              

−𝐹2(𝑥1𝑖
, 𝑥2𝑖

, … , 𝑥𝑛𝑖
) =

𝜕𝐹2

𝜕𝑥1
|

𝑖
∙ (𝑥1𝑖+1

− 𝑥1𝑖
) + ⋯ +

𝜕𝐹2

𝜕𝑥𝑛
|

𝑖
∙ (𝑥𝑛𝑖+1

− 𝑥𝑛𝑖
)             (1.12) 

              −𝐹𝑛(𝑥1𝑖
, 𝑥2𝑖

, … , 𝑥𝑛𝑖
) =

𝜕𝐹𝑛

𝜕𝑥1
|

𝑖
∙ (𝑥1𝑖+1

− 𝑥1𝑖
) + ⋯ +

𝜕𝐹𝑛

𝜕𝑥𝑛
|

𝑖
∙ (𝑥𝑛𝑖+1

− 𝑥𝑛𝑖
)  

 

which allows the calculation of the 𝑥𝑖+1 n values, since all previous iteration n values (𝑥𝑖) are 

known; 𝐹𝑖 and 𝐹𝑖
′ values may also be found with 𝑥𝑖 values. 

Therefore, the unknowns in the (1.12) equation set are the changes in the 𝑥𝑖 values from 

iteration i to iteration i+1. The set can be solved as a linear set of equations, using standard 

methods such as the Gauss elimination method. In each iteration a different linear set has to be 

solved. The iterative process is stopped after convergence of all n variable values (𝑥𝑖). As with 

single equations, this method is more efficient than the Gauss-Seidel method. 

1.2 Numerical integration in global models 

Besides algebraic equations, thermal energy models often contain differential equations. The 

type of differential equation encountered depends on the nature of the model: global or 

distributed. A global model is classified as one where properties of a system component are 

constant along its extension; this means that they do not change throughout a space coordinate. 

It is the case of a solid with a uniform temperature, or a tank filled with a fluid at uniform 

temperature. In a distributed model properties change along space coordinates. 

…
 

…
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In global modelling, if all components are in steady-state no time changes occur. Then, the 

equations that translate system operation are algebraic equations, and the model can be solved 

using the methods seen in section 1.1.2. But if time changes occur, there is a dynamic or 

unsteady situation, and to translate that, differential equations appear. Those equations express 

the change of a property as a function of time. The type of equation to solve in dynamic global 

modelling is 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)                                             (1.13) 

where 𝑦 is the property considered (dependent variable) and 𝑡 (time) the independent variable. 

In many cases there is no possible analytical solution to equation (1.13), due to the nature of 

the function f. More than one property may be involved, and a set of differential equations needs 

to be solved.  

For the (1.13) ordinary differential equation to be solved, numerical integration methods are 

presented in the next sections (1.2.1 to 1.2.4). They all transform the differential equation into 

an algebraic equation that may be solved with the methods seen in section 1.1. 

1.2.1 Euler explicit method 

The Euler explicit method allows the calculation of the value of 𝑦 at different independent 

variable values (𝑡). Those discrete time values are separated by Δ𝑡 – the integration step. 

Starting with an initial value (𝑦𝑡), the next is obtained with: 

𝑦𝑡+∆𝑡 = 𝑦𝑡 + Δ𝑡 ∙ 𝑓(𝑡, 𝑦𝑡) = 𝑦𝑡 + Δ𝑡 ∙
𝑑𝑦

𝑑𝑡
|

𝑡
                                                    (1.14) 

Figure 1.4 illustrates the method. 𝐹(𝑡) is the exact solution of the differential equation. The 

derivative in the previous instant (𝑡) is used to estimate the following value of the property 

(𝑦𝑡+∆𝑡). There is an error (𝜀) related to the difference to the exact solution 𝐹(𝑡 + Δ𝑡); however, 

in the general case the exact solution is not known. Note that the smaller the Δ𝑡, the smaller the 

error. Also note that the error is cumulative: it increases step after step. 

 

 

 

 

 

 

 

Figure 1.4 – Graphical representation of the Euler explicit method. 

With this method, the calculation in each time step involves assessing only one derivative value. 

Due to this, it is classified as a first order integration method. 

This method is not always stable, and depending on the 𝐹 function may lead to unrealistic 

results. This also depends on the time step used (Δ𝑡), and it is advisable to use low values. 
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1.2.2 Euler implicit method 

The Euler implicit method estimates the following value of the property (𝑦𝑡+∆𝑡) using the 

derivative in the next instant of time, through  

𝑦𝑡+∆𝑡 = 𝑦𝑡 + Δ𝑡 ∙ 𝑓(𝑡 + ∆𝑡, 𝑦𝑡+∆𝑡) = 𝑦𝑡 + Δ𝑡 ∙
𝑑𝑦

𝑑𝑡
|

𝑡+∆𝑡
                                                   (1.15) 

The process is represented in Figure 1.5. The segment used to estimate the next property value 

has the same slope as the derivative in the next point. The equation to obtain 𝑦𝑡+∆𝑡 is implicit, 

and depending on the form of the derivative function (𝑓) may require an iterative process to 

obtain the solution; the methods seen in section 1.1.1 may be used. 

 

 

 

 

 

 

 

Figure 1.5 – Graphical representation of the Euler implicit method. 

The Euler implicit method is also a first order integration method. Comparing Figures 1.4 and 

1.5, one may conclude that both methods lead to an error with the same order of magnitude 

(module value). However, the implicit method is always stable, independently of the time step 

used. 

1.2.3 Crank-Nicolson semi-implicit method 

The Crank-Nicolson semi-implicit method is applicable when the derivative function (𝑓) is only 

a function of 𝑦 (and not explicitly 𝑡). Then 

𝑦𝑡+∆𝑡 = 𝑦𝑡 + Δ𝑡 ∙ 𝑓(
𝑦𝑡+𝑦𝑡+∆𝑡

2
)                                                         (1.16) 

An example is the case of a body at uniform temperature under a cooling process: the change 

in temperature (derivative over time) is only a function of temperature and not time. 

 

 

 

 

 

 

 

Figure 1.6 – Graphical representation of the Crank-Nicolson method. 
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Compared to the previous two methods, this one leads to lower errors (𝜀). Although it is only a 

first order integration method (one evaluation of 𝑓 in each time step), it has a precision similar 

to second order integration methods. This semi-implicit method is always stable, independently 

of the time step used, and may require an iterative procedure in each time step. 

1.2.4 Other methods  

There are several other numerical integration methos for equation (1.13). Among them, the 

Euler modified method (second order), the Euler improved method (second order), or the 

Runge-Kutta method (fourth order). Of course, the calculation work and the precision increase 

with the increase in order. 

However, due to the typical application of numerical integration methods to computing, the 

complexity of higher order methods is frequently replaced by simpler methods using a smaller 

integration step: more steps are needed, but with less calculations in each step and similar 

quality results. 

1.3 Numerical integration in distributed models 

In a distributed model, properties change along space coordinates. The spatial change of a given 

property depends on the physical process. But in transport phenomena, which occur in thermal 

engineering, the typical equations result from mass, momentum or energy balances for an 

infinitesimal volume. Those equations involve first and second order partial derivatives, where 

the independent variables are space coordinates, and also time in dynamic situations. We shall 

start by looking at steady-state cases.  

1.3.1 Distributed steady-state modelling (1D, 2D, 3D) 

In the case of a property (Ψ) varying along one space coordinate (𝑥), the typical differential 

equation to solve has the following form  

𝑑2Ψ

𝑑𝑥2 = 𝑓(𝑥, Ψ)                                                       (1.17) 

We can take as an example the 1D heat conduction equation: 

𝑑2𝑇

𝑑𝑥2 = 𝑓(𝑥, 𝑇)                                                       (1.18) 

which in the simplest case (1D, no internal heat sources, constant thermal conductivity) may be 

reduced to 𝑑2𝑇 𝑑𝑥2⁄ = 0 , with a very simple analytical solution. 

As a 2D example, the heat conduction equation in 2D cartesian coordinates, without sources 

and with constant conductivity, is 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
= 0                                                       (1.19) 

while the energy equation for a steady-state laminar flow in 2D may be simplified to 

𝜌𝑐𝑝 (𝑣𝑥
𝜕𝑇

𝜕𝑥
+ 𝑣𝑦

𝜕𝑇

𝜕𝑦
) = 𝑘 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2)                                              (1.20) 

There are different methods to transform those differential equations into sets of algebraic ones, 

that may then be solved with the methods seen in section 1.1.2.  
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These methods are named: finite differences, finite volumes, and finite elements. 

The finite differences method replaces the first and second order derivatives by differences. If 

in a 1D situation, with variation of the Ψ property along x, we consider the 3 points separated 

by Δ𝑥 in Figure 1.7:  

 

 

 

 

 

Figure 1.7 – Variation of the Ψ property along x and Taylor series expansion. 

and using the expansion in Taylor series up to the second order term, and adding and subtracting 

the 2 equations in Figure 1.7, we will obtain for the first and second order derivatives in the 

mid-point (point 2): 

𝑑𝛹

𝑑𝑥
|

2
=

𝛹3−𝛹1

2𝛥𝑥
                                                          (1.21) 

and 

𝑑2𝛹

𝑑𝑥2 |
2

=
𝛹1+𝛹3−2𝛹2

𝛥𝑥2                                                          (1.22) 

By dividing the spatial domain in discrete points (nodes), and replacing the first order and 

second order derivatives with expressions like (1.21) and (1.22), the differential equation to be 

solved will be replaced by a set of algebraic equations (one for each node), and its solution will 

lead to the values of the property Ψ in all nodes. In 2D and 3D cases, similar expressions to 

(1.21) and (1.22) are used to replace 𝜕Ψ 𝜕𝑦⁄ , 𝜕Ψ 𝜕𝑧⁄ , 𝜕2Ψ 𝜕𝑦2⁄  and 𝜕2Ψ 𝜕𝑧2⁄ . In 2D each node 

will be identified by 2 numbers/subscripts (one for each coordinate) and in 3D by 3 numbers.  

The finite volumes method, sometimes also known as control volume method, uses a physics 

approach instead of a mathematical one. As in the finite differences method, the definition of 

the shape of the volume elements to use depends on the system geometry. For instance, in 2D 

cartesian coordinates (plates) rectangular volumes are used, while in cylindrical coordinates 

circular sectors are used. Figure 1.8 represents the 2D volume elements used in the above cases. 

Each volume is located around a generic point in the material (P). This point is surrounded by 

another 4 points/volume elements in 2D (by 6 in 3D). 

 

 

 

 

 

 

a                                                                        b 

Figure 1.8 – Volume elements in the finite volumes method: (a) rectangular; (b) circular. 
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In the finite volumes method a balance of the property Ψ in the volume is made. For example, 

in the case of 2D heat conduction in a material (Ψ = 𝑇) there will be heat fluxes across the 4 

volume borders; under steady-state the total balance of all fluxes multiplied by the respective 

areas will have to be zero. Considering that internal heat generation (𝑔̇) may occur, the equation 

for the general volume (𝑖, 𝑗) in Figure 1.8(a), with constant thermal conductivity and constant 

∆𝑥 and ∆𝑦, will be  

𝑘

∆𝑥
∆𝑦(𝑇𝑖−1,𝑗 − 𝑇𝑖,𝑗) +

𝑘

∆𝑥
∆𝑦(𝑇𝑖+1,𝑗 − 𝑇𝑖,𝑗) +

𝑘

∆𝑦
∆𝑥(𝑇𝑖,𝑗−1 − 𝑇𝑖,𝑗) +  

+
𝑘

∆𝑦
∆𝑥(𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗) + 𝑔̇∆𝑥∆𝑦 = 0                                                                                      (1.23) 

Taking into account a grid with several nodes and volume elements, there will be an equation 

analogous to (1.23) for each node/volume. The resulting algebraic equation set can be solved 

to calculate the temperatures in all nodes/volumes. The temperatures in intermediate points may 

be estimated by interpolation. The method is more accurate for smaller ∆𝑥 and ∆𝑦 values, that 

is, when more nodes/volumes are used. To obtain better solutions, the number of equations in 

the set is sometimes very high, which points to the use of computational means. The 

identification of symmetrical zones allows a reduction in the number of equations and related 

computational effort, as will be discussed in examples of chapter 4. 

The nodes/volumes located in the domain frontiers (borders) require special attention. As 

recommended in [1], nodes should be placed at the borders, as represented in Figure 1.9(a). In 

this figure case, with a convective boundary in 2 sides (possibly with different external 

temperatures and heat transfer coefficients), the equation for the border volume will be 

𝑘

∆𝑥

∆𝑦

2
(𝑇𝑖+1,𝑗 − 𝑇𝑖,𝑗) +

𝑘

∆𝑦

∆𝑥

2
(𝑇𝑖,𝑗−1 − 𝑇𝑖,𝑗) +  

+ℎ1
∆𝑦

2
(𝑇𝑒𝑥𝑡,1 − 𝑇𝑖,𝑗) + ℎ2

∆𝑥

2
(𝑇𝑒𝑥𝑡,2 − 𝑇𝑖,𝑗) + 𝑔̇

∆𝑥

2

∆𝑦

2
= 0                                             (1.24) 

 

 

 

 

 

 

 

a                                                                      b 

Figure 1.9 – Special situations in the finite volumes method: (a) boundary volume (corner); (b) volume with 2 

different materials. 

Another special case occurs in a boundary between 2 different materials. A single volume may 

be used, with the node in the boundary, and the volume including the 2 different materials –

Figure 1.9(b). In this case the discretised equation will be 
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𝑘𝐴

∆𝑥

∆𝑦

2
(𝑇𝑖−1,𝑗 − 𝑇𝑖,𝑗) +

𝑘𝐵

∆𝑥

∆𝑦

2
(𝑇𝑖−1,𝑗 − 𝑇𝑖,𝑗) +

𝑘𝐴

∆𝑥

∆𝑦

2
(𝑇𝑖+1,𝑗 − 𝑇𝑖,𝑗) +

𝑘𝐵

∆𝑥

∆𝑦

2
(𝑇𝑖+1,𝑗 −

−𝑇𝑖,𝑗) +
𝑘𝐴

∆𝑦
∆𝑥(𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗) +

𝑘𝐵

∆𝑦
∆𝑥(𝑇𝑖,𝑗−1 − 𝑇𝑖,𝑗) + 𝑔̇𝐴∆𝑥

∆𝑦

2
+ 𝑔̇𝐵∆𝑥

∆𝑦

2
= 0     (1.25) 

As for the finite elements method, it relies on a set of nodes and triangular elements (in 2D), 

distributed along the space domain. The boundaries are approximated by linear segments, which 

makes them easier to be adapted to curved boundary surfaces – see Figure 1.10.  

  

 

 

 

 

 

a                                                                     b 

Figure 1.10 – 2D finite elements: (a) triangular elements and nodes; (b) nodal systems (closed frontiers). 

 

In the case of heat conduction, in the elements of Figure 1.10(a) the temperature is supposed to 

vary linearly between the 3 nodes of each element. The problem consists in calculating the 

temperature in each node. Each triangular element has 3 degrees of freedom, because 3 nodal 

values are needed to calculate the temperature in any point inside the triangular element. 

Assuming a linear variation of the temperature in each side of the triangle, isothermal lines are 

normal to those sides, and volume elements with 6 isothermal segments around each internal 

node may be represented – Figure 1.10(b). An energy balance for each nodal system is 

performed, expressing the heat fluxes across the borders. For more mathematical details the 

reader is referred to [2]. 

In this book the finite volumes method will be favoured in all application examples of chapter 

4. This is due to its more didactical and physics-based approach. 

1.3.2 Distributed dynamic modelling 

In this case the property to be assessed changes over space and time. We will consider the finite 

volumes method to integrate the differential equation, replacing it by a set of algebraic 

equations (discretised equations). 

Besides the space coordinates, time is also an independent variable, and its first order derivate 

appears in transport equations. For example, in the 2D unsteady heat conduction equation:  

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 𝑘 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2)                                                     (1.26) 

the temperature derivative over time appears in the left-hand side due to the change in energy 

contained in the volume over time. 

Let us start by a simpler case: 1D unsteady heat conduction. The following equation applies: 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
                                                                   (1.27) 
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Figure 1.11 – Generic finite volume for 1D and dimensions. 

Considering the finite volume in Figure 1.11 and assuming the temperature is uniform along its 

length (∆𝑥) in every instant of time, the integration of the left-hand side leads to 

 𝜌 𝑐𝑝 ∫ ∫
𝜕𝑇

𝜕𝑡

𝑡+∆𝑡

𝑡∆𝑥
 𝑑𝑡 𝑑𝑥 = 𝜌 𝑐𝑝 ∆𝑥(𝑇𝑖

𝑡+∆𝑡 − 𝑇𝑖
𝑡)                                                  (1.28) 

The right-hand side comes from the balance of heat fluxes across the volume borders, and may 

be integrated as 

∫ ∫ 𝑘
𝜕2𝑇

𝜕𝑥2∆𝑥

𝑡+𝛥𝑡

𝑡
 𝑑𝑥 𝑑𝑡 = ∫ (

𝑘(𝑇𝑖+1−𝑇𝑖)

∆𝑥
−

𝑘(𝑇𝑖−𝑇𝑖−1)

∆𝑥
)  𝑑𝑡

𝑡+𝛥𝑡

𝑡
                                  (1.29) 

To solve the time integral in (1.29) it is necessary to assume a variation of the temperatures 

along time. Among other possibilities, it is assumed that, for all temperatures 

∫ 𝑇 𝑑𝑡
𝑡+𝛥𝑡

𝑡
= [𝑤𝑓 𝑇𝑡+∆𝑡 + (1 − 𝑤𝑓) 𝑇𝑡] 𝛥𝑡                                                                (1.30) 

where 𝑤𝑓 is a weighting factor which may take values from 0 to 1. With its definition the 

discretised form of equation (1.27) for volume i is: 

𝜌 𝑐𝑝 
∆𝑥

∆𝑡
(𝑇𝑖

𝑡+∆𝑡 − 𝑇𝑖
𝑡) = 𝑤𝑓 (

𝑘(𝑇𝑖+1
𝑡+∆𝑡−𝑇𝑖

𝑡+∆𝑡)

∆𝑥
−

𝑘(𝑇𝑖
𝑡+∆𝑡−𝑇𝑖−1

𝑡+∆𝑡)

∆𝑥
) +                                     

            +(1 − 𝑤𝑓) (
𝑘(𝑇𝑖+1

𝑡 −𝑇𝑖
𝑡)

∆𝑥
−

𝑘(𝑇𝑖
𝑡−𝑇𝑖−1

𝑡 )

∆𝑥
)                                              (1.31) 

This equation relates the temperature of node i at 𝑡 + ∆𝑡 with its temperature at 𝑡 and with the 

temperatures of the neighbour nodes/volumes in both instants (𝑡 + ∆𝑡 and 𝑡). The choice of the 

value of the weighting factor (𝑤𝑓) may affect the form of equation (1.31). Three typical 𝑤𝑓 

values are considered in Figure 1.12. A value 𝑤𝑓 = 0 corresponds to assuming that the 

temperatures remain constant at the 𝑡 values during ∆𝑡; therefore 𝑇𝑖
𝑡+∆𝑡 will only depend on the 

temperatures in the previous instant; equation (1.31) allows the explicit calculation of 𝑇𝑖
𝑡+∆𝑡, as 

all temperatures at 𝑡 are previously known. 

 

 

 

 

 

 

Figure 1.12 – Decreasing temperature time evolution according to the weighting factor value. 
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A value 𝑤𝑓 = 0.5 expresses a linear variation of the temperature between 𝑡 and 𝑡 + ∆𝑡 and, 

similarly to the method seen in section 1.2.3, it is called Crank-Nicolson or semi-implicit 

method. If  𝑤𝑓 = 1, the temperatures are assumed to immediately change to the 𝑡 + ∆𝑡 level at 

𝑡 – implicit method. 

Of the 3 values, Patankar [1] recommends the use of the implicit method, which allies simplicity 

with stability. The explicit method, as in the case of section 1.2.1, may lead to unstable results, 

requiring a relatively low time step. 

With the use of the implicit formulation, equation (1.31) becomes 

𝜌 𝑐𝑝 
(𝑇𝑖

𝑡+∆𝑡−𝑇𝑖
𝑡)

∆𝑡
=

𝑘

∆𝑥2
(𝑇𝑖+1

𝑡+∆𝑡 + 𝑇𝑖−1
𝑡+∆𝑡 − 2𝑇𝑖

𝑡+∆𝑡)                                                    (1.32) 

Compare this equation with the application of the finite differences seen in equations (1.21) and 

(1.22) to equation (1.27). A similar result is obtained. 

When treating higher space dimensions (2D, 3D) the same principles apply. More nodes are 

involved in each discretised equation – 4 nodes in 2D and 6 nodes in 3D, besides the central 

node P. For example, in the 2D unsteady heat conduction equation (cartesian coordinates) with 

the implicit formulation we will have:  

𝜌 𝑐𝑝∆𝑥∆𝑦 
(𝑇𝑖,𝑗

𝑡+∆𝑡−𝑇𝑖,𝑗
𝑡 )

∆𝑡
=

𝑘

∆𝑥
∆𝑦(𝑇𝑖−1,𝑗

𝑡+∆𝑡 + 𝑇𝑖+1,𝑗
𝑡+∆𝑡 − 2𝑇𝑖,𝑗

𝑡+∆𝑡) +

                                                      +
𝑘

∆𝑦
∆𝑥(𝑇𝑖,𝑗−1

𝑡+∆𝑡 + 𝑇𝑖,𝑗+1
𝑡+∆𝑡 − 2𝑇𝑖,𝑗

𝑡+∆𝑡)                                                (1.32) 

The difference between this equation and equation (1.23) for the 2D steady-state (excluding the 

heat source) lies on the left-hand side, which expresses the time variation. 

Applications to 1D and 2D cases will be seen in chapter 4. The case of fluid flow, using the 

integration of equation (1.20), will also be discussed there. 
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2 Engineering Equation Solver (EES)  

Engineering Equation Solver is used in this book as a computational tool to solve different 

modelling examples presented in chapters 3 and 4. As the name states, it is basically an equation 

solver tool, with an internal algorithm to solve sets of non-linear equations. This can be done 

with other existing software tools, such as MATLAB. However, EES has many advantages for 

thermal energy applications, due to an extensive database of fluid physical properties, and 

internal calculation tools related to heat transfer and fluid flow. It also allows to take into 

account changes in problem equations (conditions), through combined programming.    

A very quick overview of EES is given in this chapter. It concentrates on its most important 

features, taking into account the objectives of this book. For further details the reader should 

use the software manual, [3], namely regarding software installation.   

2.1 Writing equations in EES – equations window 

The EES environment includes a main menu (Figure 2.1) and different windows are available. 

The main window is called Equations Window, where all equations and main problem 

conditions are defined. 

 

 

 

 

 

 

 

 

 

Figure 2.1 – EES menu and Equations Window. 

The main menu includes different options (File, Edit, Search, Options, Calculate, Tables, Plots, 

Windows, Help and Examples – see Figure 2.1), and some sub-options can be directly assessed 

by the buttons located below.  

The definition of the problem variables used in the equations, and the related calculation process 

is referred in the next sub-section. The definition of physical properties and library databases 

will be referred in sub-section 2.1.2. 
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2.1.1 Variables and calculation process 

A set of equations to solve is defined in the Equations Window. Variables are identified as any 

combination of letters (capitals or smallcases without distinction) and numbers. In the example 

of Figure 2.2, 3 variables were set (𝑋1, 𝑋2 and 𝑋3) plus the definition of A=2. EES identifies 

4 equations and 4 variables, as although A has its value defined, it counts as a variable in the 

Equations Window. The ** or the ^ symbols are used as the “to the power of” symbol. 

Array variables may also be used, and they are very useful to express equations such as (1.32). 

They are written with square brackets around the indices (1, 2 or 3 indices), after the variable 

name, such as 𝑋1[𝑖], 𝑇[𝑖, 𝑗] or 𝑇𝑒𝑚𝑝[𝑖, 𝑗, 𝑘].    
 

 

 

 

 

 

 

 

 

Figure 2.2 – Example of problem definition in the Equations Window. 

A list of the variables in the Equations Window may be assessed by choosing in the menu 

Options, followed by Variable Info (Options → Variable Info). This will open the window in 

Figure 2.3. This window lists the 4 variables, and more information can be added in the other 

columns. The Guess column contains the defined values, such as A=2, plus the initial (guess) 

values used to start the iterative calculation process. By default all initial/guess values are set 

as 1, but this can (an sometimes must) be changed. EES applies the Newton-Raphson method 

seen in section 1.1.2, starting with the initial values. Note that the equations do not need to be 

written in the form 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) = 0; any other form is adapted by EES; the order by which 

the equations appear is also totally flexible. 

Lower and upper bounds for each variable may also be changed; by default all possible values 

(-infinity to +infinity) are considered. Units may also be assigned to each variable, and this 

information will be added to the results and outputs related to those variables (not mandatory). 

 

 

 

 

 

 

 

Figure 2.3 – List of variables for the example of Figure 2.2. 
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After choosing in the menu Calculate → Solve, the iterative process is started, with the solution 

of the linear set of equations (1.12) in each iteration, as imposed by the Newton-Raphson 

method. The derivatives in (1.12) are calculated by numerical differentiation. The process 

continues until the established errors are met, or until no solution is found. A maximum error 

for all variables, and a maximum number of iterations are defined by default, but those values 

may be changed (Options → Stop Criteria). After conclusion of the calculations the Solution 

Window will pop up – Figure 2.4 – showing the results for all variables (and their units if 

previously defined). 

 

 

 

 
 

Figure 2.4 – Solution window for the example of Figure 2.2. 

If the iterative calculation process is not successful, the initial/guess values may be changed 

and the calculation repeated. This depends on the equations and guess values, and will be 

discussed in the application examples of chapters 3 and 4. 

2.1.2 Physical properties and library data 

EES includes a database for solid and fluid physical properties. They can be used in equations, 

where they are defined by internal functions. By choosing in the menu (Options → Function 

Info) a window appears where different options may be chosen. The first option is related to 

Math functions, such as absolute value, exponential function or trigonometric functions – see 

Figure 2.5(a). The second option is “Thermophysical properties” – Figure 2.5(b). There, 

different solids or fluids may be chosen; the database includes a wide range of materials and 

fluids found in engineering applications. 

After choosing the fluid and the property in the Function Info window, information is given on 

the function name and arguments – Figure 2.5(b). As examples, for the specific heat of air and 

specific mass of water, these properties may be written in the Equations Window as: 

c_p = Cp(Air; T = 20) ∗ 1000                                  (2.1) 

rho = Density(Water; T = T1; p = 100)                    (2.2) 

  

   

 

 

 

 

 

 
 
                       a                                                    b                                                c 

Figure 2.5 – Function information: (a) math functions; (b) properties; (c) heat and flow calculations. 
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In equation (2.1) the underscore sign (between c and p) that may be used in a variable name, 

allows p to become a subscript in future windows and variable outputs (appearing as 𝑐𝑝). If the 

fluid – Air – is considered as an ideal gas, only the temperature needs to be defined (it may be 

a number or a variable in another equation); if a real gas is considered – Air_ha – then the 

pressure also needs to be defined. The multiplication by 1000 is due to the default definition of 

units in EES (using the SI system). Default energy quantities come in kJ, and to keep 

consistency with the main unit (J) the multiplication is needed. Note that units and multiples 

may be changed in the menu Options → Unit System. 

In equation (2.2) the name rho was used for the specific density of water. Writing the variable 

name with a Greek letter name, lately assigns the symbol of the Greek letter to the variable       

(𝜌 in this case), which will show up in results, tables or graphs. Here the temperature is defined 

as another variable (T1) and the pressure as 100 kPa (as the default pressure unit/multiple is 

kPa). 

EES also contains library routines and internal functions that help in many problems. Heat 

Transfer & Fluid Flow calculation tools are particularly useful. As Figure 5.2(c) shows, they 

may be seen as the 3rd option in the Function Info window – in that figure the subject of 

convection was chosen, and a function to calculate the convection coefficient and pressure drop 

in a pipe flow is shown (“call PipeFlow”). When this function is pasted to the Equations 

Window, it will automatically calculate the required outputs, as a function of the inputs (in the 

case of PipeFlow: fluid name, geometrical dimensions, temperature, pressure, flow rate, tube 

roughness). Correlations for convective heat transfer found in the literature, [4, 5], are available, 

and the flow regime is also taken into account in the calculations. Many other functions, such 

as those for heat exchanger calculations, thermal radiation and mechanical design, are also 

available. 

2.2 Expressing varying conditions – functions and procedures 

In several numerical models the set of equations to solve varies according to different problem 

conditions or restrictions. For instance, considering a heating source, the energy delivered may 

be varied according to a given control algorithm, depending on a variable temperature which is 

calculated in the model (not fixed). EES allows expressing those variations and relationships 

through the use of FUNCTIONS and PROCEDURES. They allow combining conventional 

programming with the set of equations in the model. 

They are defined in the Equations Window, but have to be declared/written before all other 

equations. If more than one FUNCTION or PROCEDURE exist, they should be placed in any 

order, but before the main equations. They may serve to repeat a calculation that occurs several 

times in the equations, or to express a logical condition. In this last case, the use of IF-THEN-

ELSE instructions is frequent. 

The difference between a FUNCTION and a PROCEDURE is that while a FUNCTION 

provides only one output to the equations, a PROCEDURE provides more than one output. 

Both may have receive one or more inputs from the main equations. Both must be given a name, 

but are called in a different manner by the main equations.  

A FUNCTION is defined by its name, followed by the input variable(s) between brackets (if 

more than one, they must be separated by commas). And it is ended by the END instruction. A 

FUNCTION is called in a main equation by just writing its name and again the input variable(s) 

between brackets. A PROCEDURE is also defined by a name, followed by brackets that include 
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the input variable(s) and the output variables (variables must be separated by commas, and to 

separate inputs and outputs a colon must be used). It is also finished with the END instruction. 

The PROCEDURE is called in the main equations by a special instruction: CALL, followed by 

its name, followed by the inputs and outputs between brackets. This is similar to what Figure 

2.5(c) shows for the PipeFlow calculation tool. 

Several examples of FUNCTIONS and PROCEDURES will be shown in chapters 3 and 4. 

2.3 Tables 

There are 3 different types of tables in EES: Lookup tables,  Parametric tables and Array Tables.  

A Lookup table may be created or modified through the menu. To create one, choose            

Tables → New Lookup Table – see Figure 2.6. The Lookup table is used to define inputs to the 

equations that are in tabular form. Many tables may be created, and, additionally, using 

interpolation functions it is possible to obtain intermediate values (from the tabulated ones). 

Any number of rows and columns may be created in this table, or modified after (Insert/Delete 

Lookup Rows or Cols). Any value in a Lookup table may be read in the equations by using  

instructions like LOOKUP, LOOKUPROW, LOOKUPCOL. Applied examples will be shown 

in chapters 3 and 4.  
 

  

 

 

 

 

 

 

Figure 2.6 – Tables menu. 
 

A Parametric Table may also be created or modified through the menu – see Figure 2.6. As the 

name suggests, it is appropriate to perform parametric analyses, allowing to vary one or more 

input variables and storing the results. Therefore, this table includes both inputs and output 

calculations. The inputs and outputs for each set of inputs is located in one row, and many rows 

may be created/added. Each row is identified with Run followed by the row number – see Figure 

2.7. Several different tables may be created, with different names (“Table #” by default). 
 

 

 

 

 

 

 

 

 

 

Figure 2.7 – Example of a Parametric Table (“Table 1”). 
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When creating the Parametric Table, the inputs and outputs are chosen from the available 

variables found in the Equations Window. When many variables occur, only the most 

significant outputs are usually included. By default, EES distinguishes with a different colour 

the inputs (in black) and the outputs (in blue) – see Figure 2.7. The colours may be changed in 

the menu (Options → Preferences → Display). 

To fill a Parametric Table, EES is run several times. To achieve this, one must choose in the 

menu Calculate → Solve Table. Then the rows are calculated and filled in sequence. One run 

may use values from a previous run, using instructions such as TABLEVALUE. To use it, the 

full instruction, written in the Equations Window, should be TABLEVALUE('TableName', 

Row, Column), or TABLEVALUE('TableName', Row, 'VariableName'). 

Note that, according to the user, a different option related to the decimal point system used in 

the computer might occur. In the UK/USA system the dot is used as a decimal point, while in 

most European countries a decimal comma is used. The decimal comma is used throughout this 

book, and this may be noticed in Figure 2.7. Also, some instructions and functions use the 

semicolon (;) instead of the comma to separate variables. 

An Array Table is automatically created by EES when array variables are defined in the 

Equations Window, and calculations are made. This table stores all the results related to the 

array variables. Figure 2.8 shows examples for one and two array variables. Note that the first 

index is displayed in rows and the second in columns. Therefore, when associating the indices 

with horizontal and vertical directions, it is preferable to use the first index as the one 

corresponding to the vertical direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

          a                                                                                  b                                                 

Figure 2.8 – Array Tables: (a) 1 index array variables - ℎ[𝑖], 𝑇[𝑖]; (b) 2 indices array variable - 𝑇[𝑖, 𝑗]. 

Although an array variable may have more than two indices, a table is only available for 1 or 2 

indices, as shown in Figure 2.8. 

Outputs from the Arrays Table may also be graphically represented, as explained in the next 

section. 



                  Heat Transfer: numerical modelling with EES applications 

19 

2.4 Graphical outputs 

With EES, multiple graphs may be created from any of the tables seen in the previous section. 

The menu option to create a graph is: Plots → New Plot Window. Different types of graphs 

may be generated, with one (X-Y Plot) or two (X-Y-Z) independent variables – see Figure 2.9. 

Thermodynamic property graphs, such as a pressure-enthalpy graph, may also be created 

(Property Plot). 

 

 

 

 

 

 

 

 

Figure 2.9 – Choice of plot type in the EES menu. 

Existing graphs may be modified – see Figure 2.9. All points corresponding to the existing table 

cells can be represented, as well as connecting curves between the represented points. It is also 

possible to perform curve fitting, with different function types, using the least-squares method. 

Linear and log scales may be used, and comments and drawings may be added later to the 

graphs. All scales and sizes are customizable. The next chapters will present many examples of 

1D and 2D graphs, used to represent the results. 
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3 Global modelling examples 

This chapter presents several examples of numerical models applied to thermal systems with a 

global approach. The models are first discussed, and then EES is used as a tool to obtain the 

solutions and perform parametric/sensitivity analyses. The EES equations/codes are also 

presented. Most of the examples are related to dynamic situations, with temperatures and other 

properties varying along time.  

As remarked in chapter 2, in the UK/USA system the dot is used as a decimal point, while in 

most European countries a decimal comma is used. In this book, the decimal comma is used, 

and this affects the use/appearance of some instructions and functions, when compared with the 

EES software manual: as a comma replaces the dot, the sign for semicolon (;) is used to replace 

the comma. 

3.1 Air cooling system with thermostatically controlled valve 

 

 

 

 

 

      a                                                                                       b 

Figure 3.1.1 – Air cooling system: (a) air and cold water circuits; (b) valve control function.  

Figure 3.1.1 represents an air cooling system, in which a stream of air is cooled through heat 

exchange to a stream of cold water. The water is moved by a pump with the following 

characteristic: 

∆𝑝𝑝𝑢𝑚𝑝 = 𝑝2 − 𝑝1 = 120000 − 15400 𝑀̇2                                                          (3.1.1) 

The pressure loss in the heat exchanger is given by: 

∆𝑝𝐻𝑋 = 𝑝3 − 𝑝4 = 9260 𝑀̇2                                                                                    (3.1.2)                       

The valve is controlled through measurement of the air outlet temperature, with its pressure loss 

coefficient given in the above graph (Figure 3.1.1(b)). 

The overall heat transfer coefficient in the air cooler (heat exchanger) may be considered 

independent of 𝑀̇ (approximation), with UA = 7000 W/ºC. 

To calculate the heat transferred in the heat exchanger, the following equation can be used: 
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𝑄̇ = 𝑈𝐴 𝛥𝑇𝑙𝑛 = 𝑈𝐴
(𝑇𝑎𝑖𝑟,𝑖𝑛−𝑇4)−(𝑇𝑎𝑖𝑟,𝑜𝑢𝑡−6)

𝑙𝑛(
𝑇𝑎𝑖𝑟,𝑖𝑛−𝑇4

𝑇𝑎𝑖𝑟,𝑜𝑢𝑡−6
)

                                                               (3.1.3) 

Develop a numerical and a computational model to calculate 𝑀̇, 𝑇4 and 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡. Analyse the 

effect of varying 𝑇𝑎𝑖𝑟,𝑖𝑛. 

 

 

This air cooling system operates under steady-state when inlet air and inlet water temperatures 

are constant, as well as flow rates. However, the cooling water flow rate is controlled by the air 

outlet temperature, so that when the air inlet temperature becomes lower it will be possible to 

decrease the water flow rate, and therefore the cooling capacity. The water valve is fully open 

for outlet air temperatures above 12ºC, and starts closing below that. 

Under the conditions in Figure 3.1.1(a), with 𝑇𝑎𝑖𝑟,𝑖𝑛 = 28ºC, we may find 𝑀̇, 𝑇4 and 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡 

using a set of algebraic equations. One expresses the pressure balance in the water stream: 

∆𝑝𝑝𝑢𝑚𝑝 = ∆𝑝𝐻𝑋 + ∆𝑝𝑣𝑎𝑙𝑣𝑒                                              (3.1.4) 

neglecting pressure losses in the connections, which gives 

120000 − 15400 𝑀̇2 = 9260 𝑀̇2 + 𝑀̇2 𝐶𝑣
2⁄                                (3.1.5) 

and where  

𝐶𝑣 = 𝑓(𝑇𝑎𝑖𝑟,𝑜𝑢𝑡)                                 (3.1.6) 

according to the control function in Figure 3.1.1(b). 

Another equation results from assuming there are no heat losses in the heat exchanger, meaning 

that the heat rate received by the water is equal to the heat rate lost by the air: 

𝑀 ̇ 𝑐𝑝,𝑤(𝑇4 − 6) = 𝑀̇𝑎𝑖𝑟 𝑐𝑝,𝑎(28 − 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡)                                            (3.1.7) 

and a final one from the HX performance: 

𝑀 ̇ 𝑐𝑝,𝑤(𝑇4 − 6) = 7000 
(28−𝑇4)−(𝑇𝑎𝑖𝑟,𝑜𝑢𝑡−6)

𝑙𝑛(
28−𝑇4

𝑇𝑎𝑖𝑟,𝑜𝑢𝑡−6
)

                                                         (3.1.8) 

The set of equations (3.1.5), (3.1.7) and (3.1.8), with the valve constant defined in (3.1.6), 

allows the calculation of the 3 unknown variables (𝑀̇, 𝑇4 and 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡). It is a non-linear set 

which we will solve with EES. We may write the 3 equations, with the valve constant defined 

in a Function, placed in the Equations Window before the equations. To assess the specific heat 

of both fluids we will use EES property database; as those properties do not significantly change 

with temperature, we will fix them at the inlet temperatures; note that we could use 𝑐𝑝 values 

calculated for the average inlet/outlet temperatures, but this would add another 2 variables to 

the equation model, as the outlet temperatures are not known. 

Figure 3.1.2 shows the Equations Window to solve the model.  
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Figure 3.1.2 – Equations Window for the air cooling system model. 

Note that in the equivalent of equation (3.1.8) the specific heat of water was multiplied by 1000, 

as the 𝑐𝑝 default units are kJ/kgK. Also note that, instead of fixing the inlet air temperature at 

28ºC, a variable was used (𝑇𝑎𝑖𝑟,𝑖𝑛) to investigate its effect on the results. Its value was then 

defined in a Parametric Table, and the solving menu choice (Calculate → Solve Table) led to 

the results in Figure 3.1.3. 

In order to obtain convergence it was necessary to impose some initial/guess values for some 

variables, instead of using the default values of 1. The initial 𝐶𝑣  was taken as 0.012, and 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡 

and 𝑇4 were changed to more realistic values (𝑇𝑎𝑖𝑟,𝑜𝑢𝑡 < 𝑇𝑎𝑖𝑟,𝑖𝑛 and 𝑇4 > 6). Those guess values 

were only used in the first Table Run, as in later runs the solution from the previous run is used 

as initial guess. 

 

 

 

 

 

 

 

 

Figure 3.1.3 – Parametric Table to assess the effect of changing 𝑇𝑎𝑖𝑟,𝑖𝑛. 

Note from the results in Figure 3.1.3 that when 𝑇𝑎𝑖𝑟,𝑖𝑛 = 28ºC the valve is not totally open, as 

the outlet air temperature is below 12ºC. 

Figure 3.1.4 shows in a Plot Window the air outlet temperature and water flow rate when the 

air inlet temperature is changed, from 18 to 36ºC. When the air inlet temperature is higher than 

28ºC the water flow rate is maximum; at lower values the flow rate decreases and cooling is 

not so intense as with the maximum flow rate (green line shown in the graph). Figure 3.1.5 

represents the heat rate for the different air inlet temperatures considered, again comparing with 

the use of maximum flow rate. 
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Figure 3.1.4 – Outlet air temperature and water flow rate when 𝑇𝑎𝑖𝑟,𝑖𝑛 changes. Comparison with maximum flow 

rate for all air temperatures (green line). 

 

 

 

 

 

 

 

 

Figure 3.1.5 – Cooling rate when 𝑇𝑎𝑖𝑟,𝑖𝑛 changes. Comparison with maximum flow rate for all air temperatures 

(green line). 

 

3.2 Thermal bottle heat transfer 

A thermal bottle is made with a stainless steel double wall, 

with vacuum inside the steel sheets (each with negligible 

thickness). When the bottle is closed it contains 0.5 litres of 

hot water at 90ºC. The outside (calm) air and surfaces are 

at 20ºC. 

Heat exchanges at the top and bottom of the bottle may be 

neglected. All bottle surfaces are gray and diffuse, with an 

emissivity of 0.1. 

Figure 3.2.1 – Thermal bottle.               Admiting that the water temperature is uniform, obtain its 

time evolution using EES. Analyse the effect of different 

time steps. 
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Evaluate also the thermal performance of the bottle when it is filled with cold water at 5ºC, with 

all outside temperatures at 20ºC. 

 

 

The model will consider that the kettle walls have negligible thermal inertia, due to the small 

thickness and good conductivity of the walls. Therefore, it is assumed that the transfer of heat 

from the water (at 𝑇𝑤) to the outside (𝑇𝑒𝑥𝑡) is done in quasi-steady mode. Figure 3.2.2 represents 

the different heat transfer modes: internal free convection between the water and the inner wall 

surface (at 𝑇𝑠𝑖), thermal radiation through the vacuum between the two metal sheets, and 

convection and radiation from the external wall surface (at 𝑇𝑠𝑒) to the outside (air and outside 

surfaces at 𝑇𝑒𝑥𝑡). Free convection is also assumed in the outside air.  

 

 

 

 

 

 

Figure 3.2.2 – Representation of heat transfer processes in the thermal bottle. 

 

The variation of water energy is related to internal convection: 

𝑀𝑐𝑝
𝑑𝑇𝑤

𝑑𝑡
= −ℎ𝑖𝑛𝑡𝐴𝑠𝑖(𝑇𝑤 − 𝑇𝑠𝑖)                                                                     (3.2.1) 

where ℎ𝑖𝑛𝑡 is a function of (𝑇𝑤 − 𝑇𝑠𝑖). With negligible wall inertia, internal convection equals 

the radiation balance between internal and external walls: 

ℎ𝑖𝑛𝑡𝐴𝑠𝑖(𝑇𝑤 − 𝑇𝑠𝑖) =
𝜎(𝑇𝑠𝑖

4−𝑇𝑠𝑒
4 )

1−𝜀𝑠𝑖
𝐴𝑠𝑖𝜀𝑠𝑖

+
1

𝐴𝑠𝑖∙1
+

1−𝜀𝑠𝑒
𝐴𝑠𝑒𝜀𝑠𝑒

                                                                   (3.2.2) 

as the view factor between the two walls can be taken as 1. In a similar manner, the external 

wall balance will be: 

𝜎(𝑇𝑠𝑖
4−𝑇𝑠𝑒

4 )
1−𝜀𝑠𝑖
𝐴𝑠𝑖𝜀𝑠𝑖

+
1

𝐴𝑠𝑖∙1
+

1−𝜀𝑠𝑒
𝐴𝑠𝑒𝜀𝑠𝑒

= 𝜀𝑠𝑒𝜎(𝑇𝑠𝑒
4 − 𝑇𝑒𝑥𝑡

4 )𝐴𝑠𝑒 + ℎ𝑒𝑥𝑡𝐴𝑠𝑒(𝑇𝑠𝑒 − 𝑇𝑒𝑥𝑡)                                    (3.2.3) 

The right-hand side of (3.2.3) includes the radiation exchange between the bottle external wall 

and external surfaces (with a much larger area), and free convection in the external air, where 

ℎ𝑒𝑥𝑡 is a function of (𝑇𝑠𝑒 − 𝑇𝑒𝑥𝑡). 

Equations (3.2.1) to (3.2.3) allow the calculation of the 3 unknown temperatures (𝑇𝑤, 𝑇𝑠𝑖 , 𝑇𝑠𝑒). 

Equations (3.2.2) and (3.2.3) are non-linear algebraic equations, and (3.2.1) is a first order 

differential equation. However, due to the dependence of ℎ𝑖𝑛𝑡 on (𝑇𝑤 − 𝑇𝑠𝑖), and to the non-

linearity of the radiation term, there is no exact solution to (3.2.1). 
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Therefore, a numerical solution is needed. Using the (Euler) implicit method seen in (1.2.2) the 

resulting discretised equation is: 

𝑇𝑤
𝑡+∆𝑡 = 𝑇𝑤

𝑡 + Δ𝑡 ∙
𝑑𝑇𝑤

𝑑𝑡
|

𝑡+∆𝑡
                                                                  (3.2.4) 

which is equivalent to 

𝑇𝑤
𝑡+∆𝑡−𝑇𝑤

𝑡

Δ𝑡
= −

ℎ𝑖𝑛𝑡
𝑡+∆𝑡𝐴𝑠𝑖

𝑀𝑐𝑝
(𝑇𝑤

𝑡+∆𝑡 − 𝑇𝑠𝑖
𝑡+∆𝑡)                                                                 (3.2.5) 

allowing the calculation of the water temperature after step ∆𝑡, depending on 𝑇𝑤
𝑡  (already 

known) and 𝑇𝑠𝑖
𝑡+∆𝑡 −  ℎ𝑖𝑛𝑡

𝑡+∆𝑡 is a function of (𝑇𝑤
𝑡+∆𝑡 − 𝑇𝑠𝑖

𝑡+∆𝑡). 

Equations (3.2.2) and (3.2.3) are valid for any 𝑡 + ∆𝑡. Together with (3.2.5), and starting with 

an initial value of the water temperature, it is possible to obtain the time evolution of the 3 

temperatures. The free convection relationships between ℎ𝑖𝑛𝑡 and ℎ𝑒𝑥𝑡 and the temperatures 

will be defined in EES, using its heat transfer correlation database, [3].  

The EES calculation procedure will be developed with a Parametric Table (Table 1) where the 

different time values are defined, step after step, or Run after Run. Figure 3.2.3 presents the 

Equations Window, with the definition of equations (3.2.5), (3.2.2) and (3.2.3), plus 

geometrical/problem inputs and the free convection functions. The time step was imposed at 60 

s (1 minute), and its effect will be evaluated later.  

For easier equation readability, Figure 3.2.4 presents the formatted equations. 

 

 

 

 

 

 

 

Figure 3.2.3 – Equations Window for the thermal bottle heat transfer example. 

 

In the Equations Window all 𝑇 variables correspond to 𝑇𝑡+∆𝑡 values in the above equations. 

The previous value 𝑇𝑤
𝑡  is designated as 𝑇_w_old, or 𝑇𝑤;𝑜𝑙𝑑. The time rows in the Parametric 

Table are identified by a counter (“line”), starting with the first row with initial values. The 

function TABLEVALUE recovers the previous temperatures (𝑇𝑤
𝑡  or 𝑇𝑤;𝑜𝑙𝑑) by searching them 

in the previous row (line-1). The heat transfer rate for each time (𝑄_dot, or 𝑄̇) was also 

calculated, as well as the equivalent radiation coefficient between walls (ℎ_rad_int, or ℎ𝑟𝑎𝑑;𝑖𝑛𝑡) 

and the overall heat transfer coefficient (𝑈). The free convection functions were chosen from 

the EES database, choosing convection in a vertical cylinder, with water on the bottle internal 

surface and air on the bottle external surface. 

Figure 3.2.5 shows a few of the initial Parametric Table rows. The numerical simulation was 

extended to a period of 24 hours, or 86440 s, which corresponds to 1441 rows with Δ𝑡=60 s. 

The calculations (Calculate → Solve Table) are started in Run number 2, as the first Run/line 

is used to impose the initial temperature of 90ºC. 
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Figure 3.2.4 – Formatted Equations window for the thermal bottle heat transfer example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.5 – Parametric Table with results for the thermal bottle heat transfer example. 
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To obtain the results in Figure 3.2.5 it was necessary to alter the initial guess values (by default 

taken as 1) only for 𝑇𝑤 and 𝑇𝑠𝑖, to avoid a zero temperature difference in the initial iteration. 

Figure 3.2.6 shows those guess values. 

 

 

 

 

 

 

 

Figure 3.2.6 – Variable Info window with guess values for the thermal bottle heat transfer example. 

 

Figure 3.2.7 presents several results in graphical form for the 24 hour period. Due to the good 

wall insulation (vacuum), the water temperature (𝑇𝑤) decreases slowly: after 12 hours it is still 

above 70ºC, and after 24 hours it is still near 60ºC. The temperature of the wall inside surface 

(𝑇𝑠𝑖), represented by the green squares only, is almost equal to the water bulk temperature – the 

difference is usually only about 0.1ºC. This is a consequence of the much higher free convection 

coefficient of the water, compared to the air one; while ℎ𝑖𝑛𝑡 varies between 255 and 188 

W/m2ºC, ℎ𝑒𝑥𝑡 varies between 3.5 and 3.0 W/m2ºC; the internal convection resistance is much 

lower; even with the addition of the external radiation coefficient (ℎ𝑟𝑎𝑑,𝑒𝑥𝑡), the total external 

coefficient is still much lower than the internal one. The bottle external surface temperature is 

always close to the outside temperature, varying between 26.0 and 23.2 ºC. The graph also 

shows the evolution of the overall heat transfer coefficient (𝑈), which varies between 0.44 and 

0.37 W/m2ºC. The radiation coefficient inside the double wall varies from 0.48 to 0.41 W/m2ºC. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.7 – Evolution of temperatures and heat transfer coefficients for the thermal bottle example. 

Figure 3.2.8 shows the evolution of ℎ𝑖𝑛𝑡 along time. 
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Figure 3.2.8 – Evolution of water free convection coefficient for the thermal bottle example. 

To analyse the effects of different time steps, it is necessary to change DELTAt in the Equations 

Window and adapt the time in the Parametric Table to reflect the time step. Using 600 s instead 

of 60 s, the differences are very small: the water temperature after 12 hours becomes equal to 

71.67ºC instead of 71.63ºC, while after 24 hours it becomes 59.02ºC instead of 58.97ºC. With 

a time step of 30 min the water temperature after 12 hours becomes equal to 71.75ºC, while 

after 24 hours it becomes 59.13ºC. Therefore, any of the values used is adequate in this example. 

Now let us look at the cold water situation, when the water is introduced in the bottle at 5ºC. 

To simulate this case it is only necessary to alter the first row of the Parametric Table to the 

initial water temperature of 5ºC (instead of 90ºC), and the 2 initial guess values 𝑇𝑤 and 𝑇𝑠𝑖 (for 

instance, to 5 and 6ºC, respectively). This will converge to the solution represented in Figure 

3.2.9. As can be noticed, the heat transfer coefficients have a smaller variation, as well as the 

temperatures; this is due to the lower driving force for the heat transfer between outside and 

inside. The water temperature is kept below 8ºC during 12 hours and below 10ºC after 24 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.9 – Evolution of temperatures and heat transfer coefficients when the water is introduced at 5ºC. 
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3.3 Electric kettle 

An electric kettle is filled with 1 litre of water at 20ºC. The kettle 

is switched-on, heated by an electric resistance at the base, with a 

useful power of 750 W. However, the lid is kept open to the outside 

air, at 20ºC and 40% relative humidity. Assume the kettle has a 

cylindrical shape, with a diameter of 10 cm, and its wall has a 

negligible thickness. Thermal radiation from the outer wall may be 

neglected, but the water surface has an emissivity of 0.9.  

Admiting that the water temperature is uniform, obtain its time 

Figure 3.3.1 – Kettle.                 evolution until it reaches 100ºC, taking into account heat losses at 

the top surface and side wall.  

 

 

The model will consider the water at uniform temperature, which is reasonable due to the free 

convection currents, and that the kettle wall has negligible thermal inertia, due to the small 

thickness. There is heat transfer from the water top surface (at 𝑇𝑤) to the outside (at 𝑇𝑒𝑥𝑡) by 

different modes: evaporation to the outside air, thermal radiation exchange with outside 

surfaces (also at 𝑇𝑒𝑥𝑡), and free convection to outside air. Heat losses through the side wall 

include free convection between the water and the wall, and then free convection from the wall 

to the air (outside radiation neglected). Figure 3.3.2 represents the different heat transfer modes.  

 

 

 

 

 

 

 

Figure 3.3.2 – Representation of heat transfer processes in the kettle. 

 

Due to the top surface evaporation there is also a loss of liquid water. Although small, it will 

also be considered. The rate of evaporation (and mass loss) depends on the difference in water 

vapour concentration between the liquid surface (saturated air) and outside air (depending on 

its temperature and humidity), and on the mass transfer coefficient. Then, the differential 

equation to express the change in the liquid water mass is 

  
𝑑𝑀𝑤

𝑑𝑡
= −ℎ𝑚𝐴𝑡𝑜𝑝[𝜌𝑣,𝑠𝑎𝑡(𝑇𝑤) − 𝜙𝑒𝑥𝑡𝜌𝑣,𝑠𝑎𝑡(𝑇𝑒𝑥𝑡)]                                                                  (3.3.1) 

where 𝜙𝑒𝑥𝑡 is the air relative humidity and 𝜌𝑣,𝑠𝑎𝑡 the vapour concentration of saturated air, 

which may be calculated with the EES property database as a function of temperature (𝑇𝑤 or 

𝑇𝑒𝑥𝑡). The mass transfer coefficient may be related to the heat convection coefficient with the 

Lewis relationship, [5]: 
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ℎ𝑚 ≅ ℎ 𝐷𝑣,𝑎𝑖𝑟/𝑘𝑎𝑖𝑟                                                                                (3.3.2) 

where 𝐷𝑣,𝑎𝑖𝑟 is the mass diffusivity for water vapour in air. 

The variation of water energy (temperature) is related to the heat rates shown in Figure 3.3.2, 

with 

𝑑(𝑀𝑤𝑐𝑝,𝑤𝑇𝑤)

𝑑𝑡
= 𝑃𝑟𝑒𝑠𝑖𝑠𝑡 − 𝑄̇𝑐𝑜𝑛𝑣,𝑖,𝑠𝑖𝑑𝑒 − 𝑄̇𝑒𝑣𝑎𝑝 − 𝑄̇𝑟𝑎𝑑,𝑡𝑜𝑝 − 𝑄̇𝑐𝑜𝑛𝑣,𝑡𝑜𝑝                           (3.3.3) 

and using temperatures and coefficients: 

𝑑(𝑀𝑤𝑐𝑝,𝑤𝑇𝑤)

𝑑𝑡
= 𝑃𝑟𝑒𝑠𝑖𝑠𝑡 − ℎ𝑠𝑖𝑑𝑒,𝑖𝑛𝑡𝐴𝑠𝑖𝑑𝑒(𝑇𝑤 − 𝑇𝑤𝑎𝑙𝑙) − ℎ𝑚𝐴𝑡𝑜𝑝Δ𝜌𝑣Δℎ𝑙𝑣 −

                                    −𝜀𝑤𝜎(𝑇𝑤
4 − 𝑇𝑒𝑥𝑡

4 )𝐴𝑡𝑜𝑝 − ℎ𝑡𝑜𝑝𝐴𝑡𝑜𝑝(𝑇𝑤 − 𝑇𝑒𝑥𝑡)                                           (3.3.4) 

On the other hand, the kettle wall balance, neglecting its thickness, and external radiation, is 

ℎ𝑠𝑖𝑑𝑒,𝑖𝑛𝑡𝐴𝑠𝑖𝑑𝑒(𝑇𝑤 − 𝑇𝑤𝑎𝑙𝑙) = ℎ𝑠𝑖𝑑𝑒,𝑒𝑥𝑡𝐴𝑠𝑖𝑑𝑒(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑒𝑥𝑡)                                                        (3.3.5) 

All ℎ convection coefficients are a function of temperatures (free convection), and will be 

calculated with the EES heat transfer correlation database. Therefore, equations (3.3.1), (3.3.4) 

and (3.3.5), with the help of (3.3.2) allow the calculation of the water mass (𝑀𝑤) and the 2 

unknown temperatures (𝑇𝑤, 𝑇𝑤𝑎𝑙𝑙). Equations (3.3.1) and (3.3.4) are first order differential 

equations, that have to be solved simultaneously.  

Therefore, a numerical solution is needed. Using the (Euler) implicit method seen in (1.2.2), 

with the derivatives calculated at 𝑡 + ∆𝑡, the resulting discretised equations for 𝑀𝑤 and 𝑇𝑤 are: 

𝑀𝑤
𝑡+∆𝑡−𝑀𝑤

𝑡

Δ𝑡
= −ℎ𝑚

𝑡+∆𝑡𝐴𝑡𝑜𝑝[𝜌𝑣,𝑠𝑎𝑡(𝑇𝑤
𝑡+∆𝑡) − 𝜙𝑒𝑥𝑡𝜌𝑣,𝑠𝑎𝑡(𝑇𝑒𝑥𝑡)]                                           (3.3.7) 

and 

𝑐𝑝,𝑤
𝑀𝑤

𝑡+∆𝑡𝑇𝑤
𝑡+∆𝑡−𝑀𝑤

𝑡 𝑇𝑤
𝑡

Δ𝑡
= 𝑃𝑟𝑒𝑠𝑖𝑠𝑡 − ℎ𝑠𝑖𝑑𝑒,𝑖𝑛𝑡

𝑡+∆𝑡 𝐴𝑠𝑖𝑑𝑒(𝑇𝑤
𝑡+∆𝑡 − 𝑇𝑤𝑎𝑙𝑙

𝑡+∆𝑡) −

           −ℎ𝑚
𝑡+∆𝑡𝐴𝑡𝑜𝑝𝛥𝜌𝑣

𝑡+∆𝑡𝛥ℎ𝑙𝑣 − 𝜀𝑤𝜎 (𝑇𝑤
𝑡+∆𝑡4

− 𝑇𝑒𝑥𝑡
4 ) 𝐴𝑡𝑜𝑝 − ℎ𝑡𝑜𝑝𝐴𝑡𝑜𝑝(𝑇𝑤

𝑡+∆𝑡 − 𝑇𝑒𝑥𝑡)      (3.3.8) 

allowing the calculation of the water mass and temperature after step ∆𝑡, with 𝑇𝑤
𝑡+∆𝑡 depending 

on 𝑇𝑤
𝑡  (already known) and 𝑇𝑠𝑖

𝑡+∆𝑡 −  ℎ𝑖𝑛𝑡
𝑡+∆𝑡 is a function of (𝑇𝑤

𝑡+∆𝑡 − 𝑇𝑠𝑖
𝑡+∆𝑡). 

Equation (3.3.5) is valid for any 𝑡 + ∆𝑡. Together with (3.3.7) and (3.3.8), and starting with the 

initial values of the water mass and temperature, it is possible to obtain the time evolution of 

the mass and temperature. 

The EES calculation procedure will be developed with a Parametric Table (Table 1) where the 

different time values are defined, step after step, or Run after Run. Figure 3.3.3 presents the 

Equations Window, with the definition of all equations, plus geometrical/problem inputs, 

properties and the free convection functions. The time step was imposed at 5 s. In the Equations 

Window, 𝑀 and all 𝑇 variables correspond to 𝑡 + ∆𝑡 values. The previous values are designated 

as 𝑀_w_old, or 𝑀𝑤;𝑜𝑙𝑑, and 𝑇_w_old, or 𝑇𝑤;𝑜𝑙𝑑. The time rows in the Parametric Table are 

identified by a counter (“line”), starting with the first row with initial values. The function 

TABLEVALUE recovers the previous mass and temperatures by searching them in the previous 

row (line-1). For easier equation readability, Figure 3.3.4 presents the formatted equations. 
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Figure 3.3.3 – Equations Window for the kettle heat transfer example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.4 – Formatted Equations window for the kettle heat transfer example. 
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Figure 3.3.5 – Parametric Table with results for the kettle heat transfer example. 
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The free convection functions were chosen from the EES database: convection in a vertical 

cylinder, with water on the internal surface (for ℎ𝑠𝑖𝑑𝑒,𝑖𝑛𝑡) and air on the external surface (for 

ℎ𝑠𝑖𝑑𝑒,𝑒𝑥𝑡); and convection to air on the top of an horizontal plate (for ℎ𝑡𝑜𝑝). 

To calculate 𝜌𝑣,𝑠𝑎𝑡(𝑇), the saturation water pressure for 𝑇 was obtained from the EES property 

database (P_sat function), and by calculating 𝜌𝑣,𝑠𝑎𝑡(𝑇) = 𝑃𝑠𝑎𝑡 (𝑅𝑣𝑇)⁄ . Alternatively, property 

functions for humid air could have been used (AirH2O mixed fluid). Further details about the 

use of EES in psychrometric calculations may be found in [6]. 

Figure 3.3.5 shows a few of the initial Parametric Table rows. The numerical simulation was 

extended until the water reached 100ºC, corresponding to a period of 465 s (94 rows with Δ𝑡=5 

s). The calculations (Calculate → Solve Table) are started in Run number 2, as the first Run/line 

is used to impose the initial temperature of 20ºC. All initial/guess default values were used 

(taken as 1), except 𝑇𝑤 and 𝑇𝑤𝑎𝑙𝑙, to avoid a zero temperature difference in the initial iteration. 

Figure 3.3.6 shows the list of variables and the guess values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.6 – Variable Info window with guess values for the kettle heat transfer example. 
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Figure 3.3.7 presents the evolution of water temperature (𝑇𝑤), and the comparison with the ideal 

case when no losses occur (mass and energy). Note from the results in Figure 3.3.5 that the 

mass loss due to evaporation only represents 0.4% of the initial mass, and therefore could have 

been neglected. Taking into account the energy losses, the water takes 15 seconds more to reach 

100ºC (compared to no losses). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.7 – Evolution of water temperature for the kettle example. 

Figure 3.3.8 shows the evolution of the different heat rate losses. As can be seen, evaporative 

losses are the most important ones, especially when the water temperature becomes higher. Top 

surface losses also represent the highest share. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.8 – Evolution of heat rate losses for the kettle example. 

The temperature of the wall (𝑇𝑤𝑎𝑙𝑙) is always very close to the water bulk temperature. This is 

a consequence of the much higher free convection coefficient of the water, compared to the air 

one; while ℎ𝑠𝑖𝑑𝑒,𝑖𝑛𝑡 varies between 91 and 514 W/m2ºC, ℎ𝑠𝑖𝑑𝑒,𝑒𝑥𝑡 varies between 2 and 7 

W/m2ºC. The top coefficient varies from 3 to 6 W/m2ºC. 
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3.4 Electric water heater 

 

 

 

 

 

 

 

 

Figure 3.4.1 – Water heater and daily water consumption pattern. 

A system that provides domestic hot water uses an electrically heated storage tank with a 

capacity of 100 litres. The total daily consumption is equal to 200 litres/day, according to the 

graph in Figure 3.4.1. 

The tank has the following characteristics: 

▪ electrical resistance power: 2 kW; 

▪ “on-off” resistance control: on at 50ºC, off at 55ºC; 

▪ tank heat loss coefficient: 1.5 W/ºC; 

▪ inlet cold water temperature (from the mains): 15ºC; 

▪ outside (air) temperature: 20ºC. 

Assuming a global tank model, simulate a system daily cycle, using EES software. Obtain the 

daily energy consumption and analyse the effect of varying the time step. 

Compare the previous results with those for a proportional control of the resistance 

(proportional band between 50 and 55ºC). 

 

 

The model will be based on the calculation of the tank water temperature (𝑇), considered to be 

uniform. The variation of water energy is related to all energy inputs (resistance, water inlet 

from mains) and outputs (water outlet, heat losses to the outside): 

𝑀𝑐𝑝
𝑑𝑇

𝑑𝑡
= 𝑃𝑟𝑒𝑠𝑖𝑠𝑡 + 𝑀̇𝑐𝑜𝑛𝑠𝑐𝑝(𝑇𝑖𝑛 − 𝑇) − (𝑈𝐴)𝑡𝑎𝑛𝑘(𝑇 − 𝑇𝑒𝑥𝑡)                                                 (3.4.1) 

Since 𝑃𝑟𝑒𝑠𝑖𝑠𝑡 may assume 2 different values (0 or 2000 W), and 𝑀̇𝑐𝑜𝑛𝑠 is not constant, there is 

no exact solution to the differential equation. Using the implicit method of numerical integration 

we will have: 

𝑇𝑡+∆𝑡−𝑇𝑡

Δ𝑡
=

1

𝑀𝑐𝑝
[𝑃𝑟𝑒𝑠𝑖𝑠𝑡

𝑡+∆𝑡 + 𝑀̇𝑐𝑜𝑛𝑠
𝑡+∆𝑡𝑐𝑝(𝑇𝑖𝑛 − 𝑇𝑡+∆𝑡) − (𝑈𝐴)𝑡𝑎𝑛𝑘(𝑇𝑡+∆𝑡 − 𝑇𝑒𝑥𝑡)]            (3.4.2) 

To solve equation (3.4.2), the model needs to define 𝑀̇𝑐𝑜𝑛𝑠
𝑡+∆𝑡 – given in Figure 3.4.1 – and 𝑃𝑟𝑒𝑠𝑖𝑠𝑡

𝑡+∆𝑡 . 

The resistance heat input is a function of the temperature (𝑇𝑡+∆𝑡), but with an on-off control, it 

is also a function of its previous state (𝑃𝑟𝑒𝑠𝑖𝑠𝑡
𝑡 ): if the temperature is somewhere between 50 and 

55ºC, the resistance will maintain its previous state – it will stay on if it was on before ∆𝑡, and 
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off if it was off before ∆𝑡. The behaviour of the resistance will be defined in EES with a 

FUNCTION. The water consumption flow rate will be defined in a Lookup Table (Lookup 1), 

translating the graph of Figure 3.4.1, and shown in Figure 3.4.2. The values of flow rate for a 

given time will be read with the Lookup function, according to the time. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.2 – Lookup table to define water consumption in the water heater example. 

Then we may start with an initial value of the water temperature, and obtain the following 

values. The EES calculation procedure will be developed with a Parametric Table (Table 1) 

where the different time values are defined, step after step, or Run after Run. Figure 3.4.3 

presents the Equations Window, with the definition of equations (3.4.2), and the control 

function (RESIST), plus a few of the other input values. The time step was imposed at 60 s (1 

minute), and its effect will be evaluated later.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.3 – Equations Window for the water heater example. 
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In the Equations Window 𝑇 corresponds to 𝑇𝑡+∆𝑡 in equation (3.4.2). The previous value 𝑇𝑡 is 

designated as 𝑇_old, or 𝑇𝑜𝑙𝑑. The time rows in the Parametric Table are identified by a counter 

(“row_param”), starting with the first row with initial values. The function TABLEVALUE 

recovers the previous temperatures (𝑇𝑡 or 𝑇_old) by searching them in the previous row 

(row_param -1). 

Note that the resistance power at a given time (𝑃_resist) is calculated using the previous values 

of power (𝑃_resist_old) and temperature (𝑇_old); the previous value of 𝑃 is needed to define 

the state of the resistance between the on-off values, when the resistance keeps the previous 

value; but according to the implicit method chosen, 𝑃_resist should be calculated with 𝑇 instead 

of 𝑇_old; however, in this problem, using 𝑇 would lead to numerical instability (no convergence 

of the solution); this is due to the on-off situation, and introduces an explicit method influence 

on the integration of equation (3.4.2). 

The daily energy consumption is calculated by accumulating the resistance power over time, 

using the variable Energy_cons. 

Figure 3.4.4 shows a few of the initial and final Parametric Table rows. The numerical 

simulation was extended to a period of 24 hours, or 86440 s, which corresponds to 1441 rows 

with Δ𝑡=60 s. The calculations (Calculate → Solve Table) are started in Run number 2, as the 

first Run/line is used to impose the initial water temperature. However, this temperature is not 

directly known. Therefore, we assumed that the same daily cycle is repeated every day; this 

way, the initial temperature will be equal to the temperature at the end of the day. As the 

simulation was run for 24 hours only, this involved an iterative use of the model, starting with 

an initial temperature value between 50 and 55ºC (and 𝑃resist = 0), and changing it to the final 

temperature value (24 h), until a close match between the 2 values was obtained; only 2 or 3 

iterations were needed to reach the value of 53.7ºC in Figure 3.4.4. Note that, to obtain the 

solution, it was not necessary to alter the default guess values of all variables (taken as 1), which 

are only used in Run 2, as the solution from the previous Run is used as guess for the next Run.  

Figure 3.4.5 graphically presents the temperature results of the Parametric Table. The water 

temperature is kept between 50 and 55ºC most of the time. There is however a morning period 

(between 7 and 8.7 hours), with the highest water consumption rate, when the resistance power 

is not enough to maintain the water above 50ºC. During this period, the water temperature 

reaches a minimum of 43.5ºC. We may note that in short periods the temperature exceeds 55ºC; 

this is due to the delay in the model response to the resistance switch-off; the effect of the 

switch-off is only noticed after the end of the integration step (∆𝑡) – the resistance is switched-

on until the end of the integration step. We could reduce the step in those moments, but the 

error associated with energy quantities is very small. The calculated daily energy consumption 

is equal to 9.2 kWh. 

Figure 3.4.6 presents the resistance operation and the water consumption rate during the daily 

cycle. 

Figure 3.4.7 presents a comparison between the previous temperature evolution (∆𝑡=60 s) and 

the evolution when a time step of 300 s is used. The previously noted resistance switch-off 

model delay is responsible for the most noticeable differences. They are however small, and 

the calculated daily energy consumption does not differ much: 9.17 kWh for a ∆𝑡=300 s, 

compared to 9.20 kWh for a ∆𝑡=60 s. 
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Figure 3.4.4 – Parametric Table with results for the water heater example. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.5 – Evolution of the water temperature with on-off control.  
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Figure 3.4.6 – Evolution of resistance power (on-off control) and water consumption rate. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.7 – Comparison of temperature profiles and daily energy values with 2 different time steps. 

In order to limit the minimum water temperature, during the higher consumption period, it is 

possible to increase the resistance power. Figure 3.4.8 shows the water temperature profile with 

a 3000 W resistance. The minimum temperature increases to 49.4ºC (an increase of almost 6ºC), 

but with an increase in daily energy consumption to 9.65 kWh. 

As an alternative to the on-off control, we also analyse the effect of using a proportional control 

between 50 and 55ºC. In that case, the EES Function RESIST of Figure 3.4.3 will be only a 

function of temperature, and should be adapted. In the equations the resistance is defined with 

𝑃resist = RESIST(𝑇). And in this case, there is no need to use 𝑇_old, as there is no convergence 

instability, allowing a fully implicit formulation of the solution. Figure 3.4.9 shows the 

Equations Window for the proportional control case. 

Figures 3.4.10 and 3.4.11 show the graphical results with proportional control, and a maximum 

power of 2000 W. The minimum water temperature is now 44.8ºC (1.3ºC higher), and in other 

consumption periods it is always higher than with the on-off control.  
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Figure 3.4.8 – Evolution of water temperature and daily energy consumption with 𝑃resist = 3000 W. 

 

 

 

 

 

 

 

 

 

Figure 3.4.9 – Equations Window for the water heater with proportional control. 

 

 

 

 

 

 

 

Figure 3.4.10 – Evolution of the water temperature with proportional control. 
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Figure 3.4.11 – Evolution of resistance power (proportional control) and water consumption rate. 

With proportional control the resistance works most of the time at less than 1000 W. The daily 

energy consumption is a bit higher at 9.48 kWh (compared to 9.2 kWh with on-off). 

 

3.5 Domestic hot water solar system 

 

 

 

 

 

 

 

 

 

Figure 3.5.1 – Domestic hot water solar system and daily water consumption pattern. 

Figure 3.5.1 represents a system that provides domestic hot water, using solar thermal collectors 

and a storage tank. Water is circulated in the collectors when there is an increase in the water 

temperature – collector outlet temperature higher than tank temperature. This is achieved with 

the differential controller that switches on or off the pump. 

Consider the following system characteristics: 

▪ solar collector area: 4 m2; collector water flow rate: 0.08 kg/s (when pump switched on); 

▪ storage tank: volume – 300 l; heat loss coefficient – 1.8 W/ºC; outside temperature – 20ºC; 

▪ inlet cold water temperature (from the mains): 15ºC. 

The collector thermal efficiency (useful heat divided by total incident solar radiation) depends 

on the collector inlet temperature, outside ambient air temperature, and incident solar radiation: 

𝜂𝑐𝑜𝑙 = 0.8 − 5 (𝑇𝑐𝑜𝑙,𝑖𝑛 − 𝑇𝑎𝑚𝑏) 𝐼𝑠𝑜𝑙⁄                                                               (3.5.1) 

3
.4

 –
 E

le
c
tr

ic
 w

a
te

r 
h

e
a
te

r 

 

3
.5

 –
 D

o
m

e
s
ti
c
 h

o
t 
w

a
te

r 
s
o
la

r 
s
y
s
te

m
 



                  Heat Transfer: numerical modelling with EES applications 

43 

Assuming a global tank model, and no water heating element besides the solar collectors, 

simulate the system during one day of March, with a total water consumption of 200 litres/day, 

according to the graph in Figure 3.5.1, and with the following climatic data: 

 

hour 1 2 3 4 5 6 7 8 9 10 11 12 

Tamb (ºC) 10.7 10.5 10.4 10.2 10.2 10.0 9.9 10.3 11.4 12.5 13.4 14.1 

𝐼𝑠𝑜𝑙 (W/m2) 0 0 0 0 0 0 0 0 40 168 319 436 
 

hour 13 14 15 16 17 18 19 20 21 22 23 24/ 0 

Tamb (ºC) 14.7 15.2 15.2 15.3 14.7 14.0 12.8 12.2 11.7 11.3 11.1 10.8 

𝐼𝑠𝑜𝑙  (W/m2) 564 677 556 409 351 246 148 14 0 0 0 0 

Next, assume that the storage tank also provides auxiliary energy through an electrical 

resistance, with a maximum power of 1500 W and a proportional control (proportional band 

between 50ºC – maximum power – and 55ºC – zero power). Obtain the temperature evolution 

and the daily energy consumption, during the same day. 

Finally, assume that auxiliary energy is provided in a separate (smaller) tank, placed after the 

larger storage tank, with a capacity of 50 litres and a heat loss coefficient of 0.6 W/ºC, using an 

identical electrical resistance and control. Perform the new simulation and compare its results 

with the previous ones. 

 

 

The model will be based on the calculation of the tank water temperature (𝑇), considered to be 

uniform. The variation of water energy is related to all energy inputs (water inlet from mains 

and water inlet from the collector circuit) and outputs (water outlet for consumption, heat losses 

to the outside and water outlet to the collector circuit (collector inlet): 

𝑀𝑐𝑝
𝑑𝑇

𝑑𝑡
= 𝑀̇𝑐𝑜𝑛𝑠𝑐𝑝(𝑇𝑚𝑎𝑖𝑛𝑠 − 𝑇) + 𝑀̇𝑐𝑜𝑙𝑐𝑝(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 − 𝑇) − (𝑈𝐴)𝑡𝑎𝑛𝑘(𝑇 − 𝑇𝑒𝑥𝑡)   (3.5.2) 

𝑀̇𝑐𝑜𝑛𝑠 is not constant, and the collector input only exists if there is heat gain in the collectors 

(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 > 𝑇). When this happens, 𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 may be related to  𝑇 and to the climatic data through 

the collector efficiency – equation (3.5.1). We may write  

𝜂𝑐𝑜𝑙𝐼𝑠𝑜𝑙𝐴𝑐𝑜𝑙 = 𝑀̇𝑐𝑜𝑙𝑐𝑝(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 − 𝑇)                                                              (3.5.3) 

or 

0.8 𝐼𝑠𝑜𝑙𝐴𝑐𝑜𝑙 − 5(𝑇 − 𝑇𝑎𝑚𝑏)𝐴𝑐𝑜𝑙 = 𝑀̇𝑐𝑜𝑙𝑐𝑝(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 − 𝑇)                                                (3.5.4) 

Equation (3.5.4) expresses a steady-state collector balance, valid for all instants, as the collector 

thermal inertia is negligible (short thermal response time). Then, this algebraic equation, 

together with the differential equation (3.5.2), define the values of  𝑇 and 𝑇𝑐𝑜𝑙,𝑜𝑢𝑡. Due to the 

changes in 𝑀̇𝑐𝑜𝑛𝑠 and 𝑀̇𝑐𝑜𝑙 a numerical solution is required. Again, using the implicit method 

of integration, the algebric/discretised equations to solve are: 

𝑇𝑡+∆𝑡−𝑇𝑡

Δ𝑡
=

1

𝑀𝑐𝑝
[𝑀̇𝑐𝑜𝑛𝑠

𝑡+∆𝑡𝑐𝑝(𝑇𝑚𝑎𝑖𝑛𝑠 − 𝑇𝑡+∆𝑡) + 𝑀̇𝑐𝑜𝑙
𝑡+∆𝑡𝑐𝑝(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡

𝑡+∆𝑡 − 𝑇𝑡+∆𝑡) −

                                                                                                        −(𝑈𝐴)𝑡𝑎𝑛𝑘(𝑇𝑡+∆𝑡 − 𝑇𝑒𝑥𝑡)]           (3.5.5) 

and 

0.8 𝐼𝑠𝑜𝑙
𝑡+∆𝑡𝐴𝑐𝑜𝑙 − 5(𝑇𝑡+∆𝑡 − 𝑇𝑎𝑚𝑏

𝑡+∆𝑡)𝐴𝑐𝑜𝑙 = 𝑀̇𝑐𝑜𝑙
𝑡+∆𝑡𝑐𝑝(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡

𝑡+∆𝑡 − 𝑇𝑡+∆𝑡)                          (3.5.6) 
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Replacing (3.5.6) in (3.5.5) a single equation may be obtained: 

𝑇𝑡+∆𝑡−𝑇𝑡

Δ𝑡
=

1

𝑀𝑐𝑝
[𝑀̇𝑐𝑜𝑛𝑠

𝑡+∆𝑡𝑐𝑝(𝑇𝑚𝑎𝑖𝑛𝑠 − 𝑇𝑡+∆𝑡) + [0.8 𝐼𝑠𝑜𝑙
𝑡+∆𝑡 − 5(𝑇𝑡+∆𝑡 − 𝑇𝑎𝑚𝑏

𝑡+∆𝑡)]
+

𝐴𝑐𝑜𝑙 −

                                                                                                        −(𝑈𝐴)𝑡𝑎𝑛𝑘(𝑇𝑡+∆𝑡 − 𝑇𝑒𝑥𝑡)]          (3.5.7) 

However, only positive values of the efficiency must be considered, as in other situations (e.g. 

at night) the collector circuit pump is stopped. This was noted in equation (3.5.7) with the [ ]+ 

sign. Therefore, the pump operation needs to be defined in a function. The model also needs to 

define 𝑀̇𝑐𝑜𝑛𝑠
𝑡+∆𝑡. The water consumption flow rate will be defined in a Lookup Table (Lookup 1), 

translating the graph of Figure 3.5.1. The hourly values of ambient temperature and solar 

radiation, will also be included in the Lookup Table, and then used to calculate the values for a 

given time. Figure 3.5.2 shows the Lookup Table. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.2 – Lookup Table for the hot water solar system example. 

The EES calculation procedure will be developed with a Parametric Table (Table 1) where the 

different time values are defined, step after step, or Run after Run, during 24 hours. Starting 

with an initial value of the water temperature, the following values are obtained. Figure 3.5.3 

presents the Equations Window, with the definition of equations (3.5.5) and (3.5.6), and the 

pump control function (PUMP), plus other input values. The control function defines a pump 

factor (𝑓𝑝𝑢𝑚𝑝, equal to 0 or 1) that, multiplied by the collector flow rate, takes into account the 

pump state in the tank balance. The time step was imposed at 60 s (1 minute).  

In the Equations Window, 𝑇 and other variables correspond to values at 𝑡 + ∆𝑡 in the previous 

equations. The previous value 𝑇𝑡 is designated as 𝑇_old, or 𝑇𝑜𝑙𝑑. The time rows in the 

Parametric Table are identified by a counter (“line”), starting with the first row with initial 

values. The function TABLEVALUE recovers the previous temperature (𝑇𝑡 or 𝑇_old) by 

searching in the previous row (line -1). 

The values of consumption flow rate, ambient temperature and solar radiation, for a given time, 

were calculated from the Lookup Table using an interpolation function (Interpolate1 – a first 

degree interpolation). 
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Figure 3.5.3 – Equations Window for the hot water solar system example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.4 – Evolution of storage and collector temperatures for the hot water solar system example. 

To find the initial water temperature (Run 1 of the Parametric Table) it was assumed that the 

same daily cycle is repeated every day; this way, the initial temperature will be equal to the 

temperature at the end of the day. As the simulation was run for 24 hours only, this involved an 

iterative use of the model, starting with an initial temperature value, and changing it to the final 

temperature value (24 h), until a close match between the 2 values was obtained; a value of 

43.4ºC was obtained. 

Figure 3.5.4 presents the temperature results. The minimum water temperature is 34.5ºC, and 

the maximum is 49.5ºC. Note that the pump circulates water in the collectors between 9.8 and 

18.2 (during 8.4 hours). The maximum water temperature increase in the solar collectors is 

equal to 4.9ºC at 14:00, when the solar radiation is higher. 
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If higher water temperatures are needed, then auxiliary heating needs to be used. The first option 

to analyse is to use an electrical resistance in the storage tank, with a maximum power of 1500 

W and a proportional control between 50 and 55ºC. The corresponding model needs to include 

the resistance input, which depends on water temperature. The discretised equations become: 

𝑇𝑡+∆𝑡−𝑇𝑡

Δ𝑡
=

1

𝑀𝑐𝑝
[𝑃𝑟𝑒𝑠𝑖𝑠𝑡

𝑡+∆𝑡 + 𝑀̇𝑐𝑜𝑛𝑠
𝑡+∆𝑡𝑐𝑝(𝑇𝑚𝑎𝑖𝑛𝑠 − 𝑇𝑡+∆𝑡) + 𝑀̇𝑐𝑜𝑙

𝑡+∆𝑡𝑐𝑝(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡
𝑡+∆𝑡 − 𝑇𝑡+∆𝑡)

+
−

                                                                                                        −(𝑈𝐴)𝑡𝑎𝑛𝑘(𝑇𝑡+∆𝑡 − 𝑇𝑒𝑥𝑡)]          (3.5.8) 

and 

0.8 𝐼𝑠𝑜𝑙
𝑡+∆𝑡𝐴𝑐𝑜𝑙 − 5(𝑇𝑡+∆𝑡 − 𝑇𝑎𝑚𝑏

𝑡+∆𝑡)𝐴𝑐𝑜𝑙 = 𝑀̇𝑐𝑜𝑙
𝑡+∆𝑡𝑐𝑝(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡

𝑡+∆𝑡 − 𝑇𝑡+∆𝑡)                         (3.5.9) 

Figure 3.5.5 presents the Equations Window to solve the model. As in the example of section 

3.4, the resistance input is calculated with a Function (RESIST), depending on the water 

temperature. Besides that, a new variable was introduced to calculate the daily energy 

consumption, accumulating the resistance power over time: variable Energy_cons. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.5 – Equations Window for the hot water solar system with integrated storage and electrical heating. 

The graphical results are shown in Figures 3.5.6 and 3.5.7. The temperature levels are higher 

than in Figure 3.5.4: the minimum storage temperature is now 48.6ºC and the maximum is now 

60.5ºC, due to the resistance input. But as the collector inlet temperature (storage temperature) 

is higher, the collectors operate with poorer efficiency and less time. The daily electrical energy 

consumption is equal to 5.753 kWh, while the solar collectors provide 4.617 kWh to the storage 

(45% of the total). The collected solar energy may be calculated by adding another 

accumulation variable in the Equations Window – Energy_sol (similar to Energy_cons): 

Energysol = Energysol,old + 𝑓𝑝𝑢𝑚𝑝 ∗ 𝑀̇𝑐𝑜𝑙 ∗ 𝑐𝑝 ∗ (𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 − 𝑇) ∗ Δ𝑡                              (3.5.10) 

3
.5

 –
 D

o
m

e
s
ti
c
 h

o
t 
w

a
te

r 
s
o
la

r 
s
y
s
te

m
 



                  Heat Transfer: numerical modelling with EES applications 

47 

 

 

 

 

 

 

 

 

Figure 3.5.6 – Evolution of storage and collector temperatures for the hot water solar system with integrated storage 

and electrical heating. 

 

 

 

 

 

 

 

 

 

Figure 3.5.7 – Evolution of resistance power (proportional control) and water consumption rate for the hot water 

solar system with integrated storage and electrical heating. 

The second alternative to analyse is the use of a separate auxiliary energy tank, with a smaller 

volume (50 litres), where the electrical resistance is placed; as before, the resistance has a 

maximum power of 1500 W and a proportional control between 50 and 55ºC. Figure 3.5.8 

represents this system configuration. 

 

 

 

 

 

Figure 3.5.8 – Schematic representation of the hot water solar system with separate storage and auxiliary heating. 
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The Equations Window for this system configuration is shown in Figure 3.5.9. By comparison 

with Figure 3.5.5 (integrated storage and heating), another set of equations was added to include 

the auxiliary tank and calculate the variables T_aux and T_aux_old. The resistance input 

(P_resist) was removed from the storage tank and included in the smaller tank.  Figures 3.5.10 

and 3.5.11 show the EES results in graphical form. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.9 – Equations Window for the hot water solar system with separate storage and auxiliary heating. 

 

 

 

 

 

 

 

 

 

Figure 3.5.10 – Evolution of storage, consumption and collector temperatures for the hot water solar system with 

separate storage and auxiliary heating.  
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Figure 3.5.11 – Evolution of resistance power (proportional control) and water consumption rate for the hot water 

solar system with separate storage and auxiliary heating. 

With separate storage and auxiliary heating, the storage and collector outlet temperatures have 

exactly the same values as in Figure 3.5.4, as no electrical heating is provided to the storage. 

Therefore, the inlet collector temperatures are kept at the minimum level, with higher collector 

efficiencies. The auxiliary tank temperature never goes below 51ºC, even when the water 

consumption is higher, and in other water consumption periods it is always above 53.5ºC. 

In this configuration the daily electrical energy consumption is equal to 3.424 kWh, with a 

reduction of 40% compared to the integrated storage/heating configuration. The solar collectors 

provide now 6.883 kWh to the storage (67% of the total). 

 

3.6 Swimming pool solar heating 

 

 

 

 

 

 

 Figure 3.6.1 – Swimming pool solar heating system. 

An outdoor swimming pool is heated with a solar thermal system, as shown in the figure. There 

is a heat exchanger (HX) between the collector circuit and the pool circuit (with water 

circulating in both). We would like to evaluate the time required to heat the pool water from 

the mains temperature of 16ºC to the required operating temperature of 28ºC. The pool is filled 

with water on the 1st of May, and the hourly climatic data are available in an Excel file (solar 

radiation on horizontal and collector surfaces, ambient air temperature and humidity, and wind 

speed). The pool water has no significant shading and its surface is covered during the night 

period, from 18:00 to 8:00 (during this period all pool thermal losses may be neglected). 

Consider the pool at uniform temperature. 
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The solar collector area is equal to 125 m2, equal to 50% of the pool area (250 m2). The pool 

average depth is equal to 2 m. The collectors have the following efficiency characteristic curve: 

𝜂𝑐𝑜𝑙 = 0.72 − 5 (𝑇𝑐𝑜𝑙,𝑖𝑛 − 𝑇𝑎𝑚𝑏) 𝐼𝑠𝑜𝑙,𝑐𝑜𝑙⁄                                      (3.6.1) 

The collector circuit pump works whenever there is heat gain. The pool circuit pump works 

when there is collector circulation, and the fluids and flow rates of both circuits are the same 

(0.020 kg/s/m2
col in the collector circuit). Under these conditions the heat exchanger efficiency 

is equal to 0.7.  

Build a numerical model for the pool water temperature evolution, and solve it using the EES 

software. 

 

 

 

 

 

 

Figure 3.6.2 – Temperatures and climatic variables for the swimming pool model. 

The main model equation to calculate the pool water temperature (𝑇𝑝) is related to the time 

variation of water energy, which depends on all energy inputs and outputs. We will assume that, 

although some of the water evaporates to the ambient air, its mass is compensated by 

introducing new water; therefore, the pool water mass is constant. But the effect of this new 

water on the energy balance is neglected. When the pumps of Figure 3.6.2 are in operation, the 

pool receives water at a higher temperature (𝑇𝑝,𝑖𝑛). On the other hand, if the water surface is 

not covered, it absorbs solar radiation and looses heat by convection, radiation and evaporation. 

Other pool heat losses or gains are neglected. The following equation expresses the energy 

balance: 

𝑀𝑝𝑐𝑝,𝑝
𝑑𝑇𝑝

𝑑𝑡
= [𝑀̇𝑝𝑐𝑝,𝑝(𝑇𝑝,𝑖𝑛 − 𝑇𝑝)]

+
+ [𝑄̇𝑠𝑜𝑙,𝑎𝑏𝑠 − (𝑄̇𝑒𝑣𝑎𝑝 + 𝑄̇𝑐𝑜𝑛𝑣 + 𝑄̇𝑟𝑎𝑑)]

++
   (3.6.2) 

The  [ ]+ notation means that this term is considered only when positive, that is, only when 

there is heat gain in the solar collectors (𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 > 𝑇𝑐𝑜𝑙,𝑖𝑛 implies that 𝑇𝑝,𝑖𝑛 > 𝑇𝑝). And the 

 [ ]++ notation means that the term only applies if the pool surface is not covered (otherwise 

it is considered as zero). 

The absorbed solar radiation depends on the absorptance coefficient of water and incident solar 

radiation on horizontal surfaces: 

𝑄̇𝑠𝑜𝑙,𝑎𝑏𝑠 = 𝛼𝑝𝐼𝑠𝑜𝑙,𝑝𝐴𝑝                             (3.6.3) 

The evaporation losses depend on the evaporated mass, which depends on the mass transfer 

coefficient, difference in water vapour concentration and enthalpy of vaporisation: 

𝑄̇𝑒𝑣𝑎𝑝 = ℎ𝑚[𝜌𝑣,𝑠𝑎𝑡(𝑇𝑝) − 𝜙𝑎𝑚𝑏𝜌𝑣,𝑠𝑎𝑡(𝑇𝑎𝑚𝑏)] ∆ℎ𝑙𝑣 𝐴𝑝             (3.6.4) 

The convective heat losses depend on the convective heat transfer coefficient: 
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𝑄̇𝑐𝑜𝑛𝑣 = ℎ (𝑇𝑝 − 𝑇𝑎𝑚𝑏) 𝐴𝑝                           (3.6.5) 

The heat and mass transfer coefficients may be related through the Lewis relationship – 

equation (3.3.2). 

For a surface exposed to outside air, the coefficient may be related to the wind speed through a 

simple linear relationship for a varying flow over a rough flat surface: 

 ℎ = 6.19 + 4.29 𝑣𝑤𝑖𝑛𝑑                           (3.6.6) 

One must note that the wind speed available in climatic files corresponds to values measured at 

a given height above the ground level (usually 10 m). The wind speed to be used in equation 

(3.6.6) should be the speed at ground level. It is recommended to divide the standard measured 

values by a factor between 5 and 10, depending on the wind protection at the pool site. 

The radiative losses, assuming that all outside surfaces and sky are at the same temperature 

(equal to 𝑇𝑎𝑚𝑏) 

𝑄̇𝑟𝑎𝑑 = 𝜀𝑝 𝜎(𝑇𝑝
4 − 𝑇𝑎𝑚𝑏

4) 𝐴𝑝                          (3.6.7) 

The relationship between 𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 and  𝑇𝑐𝑜𝑙,𝑖𝑛 depends on collector efficiency and climatic data. 

Using  equation (3.6.1) we may write (assuming steady-state in the collectors):  

0.72 𝐼𝑠𝑜𝑙,𝑐𝑜𝑙𝐴𝑐𝑜𝑙 − 5(𝑇𝑐𝑜𝑙,𝑖𝑛 − 𝑇𝑎𝑚𝑏)𝐴𝑐𝑜𝑙 = 𝑀̇𝑐𝑜𝑙𝑐𝑝,𝑐(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 − 𝑇𝑐𝑜𝑙,𝑖𝑛)                        (3.6.8) 

The relationship between 𝑇𝑝,𝑖𝑛 and the other relevant temperatures depends on the heat 

exchanger efficiency:  

𝑀̇𝑝𝑐𝑝,𝑝(𝑇𝑝,𝑖𝑛 − 𝑇𝑝) [𝐶𝑚𝑖𝑛(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 − 𝑇𝑝)]⁄ = 0.7                                   (3.6.9) 

where 𝐶𝑚𝑖𝑛 is the minimum flow heat capacity (𝑀̇𝑐𝑝) of the 2 streams; in this example the 2 

capacities will be considered as equal (same fluid and same flow rate). 

A final equation states the equality of the heat received by the colder stream and the heat lost 

by the warmer stream in the heat exchanger: 

𝑀̇𝑝𝑐𝑝,𝑝(𝑇𝑝,𝑖𝑛 − 𝑇𝑝) = 𝑀̇𝑐𝑜𝑙𝑐𝑝,𝑐𝑜𝑙(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 − 𝑇𝑐𝑜𝑙,𝑖𝑛)                                (3.6.10) 

The model main equations are then equations (3.6.2), (3.6.8), (3.6.9) and (3.6.10), assisted by 

equations (3.6.3) to (3.6.7). Equations (3.6.8-10) are algebraic equations, valid for any instant 

𝑡 + ∆𝑡. Equation (3.6.2) must be numerically integrated; with the implicit method it becomes: 

𝑀𝑝𝑐𝑝,𝑝
𝑇𝑝

𝑡+∆𝑡−𝑇𝑝
𝑡

Δ𝑡
= [𝑀̇𝑝𝑐𝑝,𝑝(𝑇𝑝,𝑖𝑛 − 𝑇𝑝)]

𝑡+∆𝑡,+
+

                                                                       + [𝑄̇𝑠𝑜𝑙,𝑎𝑏𝑠 − (𝑄̇𝑒𝑣𝑎𝑝 + 𝑄̇𝑐𝑜𝑛𝑣 + 𝑄̇𝑟𝑎𝑑)]
𝑡+∆𝑡,++

   (3.6.11) 

To implement the model equations in EES, we defined the pump operation ([ ]+) and cover 

placement ([ ]++) conditions, using FUNCTIONS, and 2 multiplying factors that are either 0 

or 1: 𝑓𝑝𝑢𝑚𝑝 and 𝑓𝑐𝑜𝑣𝑒𝑟. The values of the climatic variables were defined in a Lookup Table 

(“Lookup 1”) and used with the equations to sequentially calculate the temperatures, step after 

step. The Parametric Table (“Table 1”) will start with row/run number 1, with the initial pool 

water temperature of 16ºC, and continue with time steps that were defined equal to 300 s (5 

min). Figure 3.6.3 shows only the first rows of the Lookup Table, since the hourly data for the 

full month of May were introduced (for an average year).  
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Figure 3.6.3 – Lookup Table with climatic variables for the swimming pool example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.4 – Equations Window for the swimming pool example. 
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The PUMP Function defines if the pump operates (𝑓𝑝𝑢𝑚𝑝 = 1, when 𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 > 𝑇𝑐𝑜𝑙,𝑖𝑛), and is 

similar to the one seen in example/section 3.5. 

The COVER Function defines when the pool cover is placed (𝑓𝑐𝑜𝑣𝑒𝑟 = 0, between 18:00 and 

8:00). This will eliminate solar gains and heat losses in the pool surface in that period. Because 

several days were simulated, a “schedule” variable was used to take into account the same 

period every day. 

Figure 3.6.5 presents results from a few rows/runs of “Table 1”. In those rows different 

combinations of 𝑓𝑝𝑢𝑚𝑝 and 𝑓𝑐𝑜𝑣𝑒𝑟 values occurred: pump not operating with cover on, followed 

by pump operating with cover, and then followed by pump operating without cover. Note that 

solar gains and evaporation losses that appear on “Table 1” when the cover is on, are calculated 

but do not affect the pool balance, as they are multiplied by 𝑓𝑐𝑜𝑣𝑒𝑟 = 0.     

 

 

 

 

 

 

 

 

 

 

Figure 3.6.5 – Extract of the Parametric Table “Table 1” for the swimming pool example. 

 

 

 

 

 

 

 

 

Figure 3.6.6 – Evolution of pool water temperature for the swimming pool example. 
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Figure 3.6.6 presents a graphical evolution of the pool water temperature during the first 25 

days of May. Initially the increase in temperature is higher, as the water is colder, and steps may 

be noticed in the curve, corresponding to daily increases in water temperature. At the end of 

each day there is a slight decrease in water temperature. After 15 days the pool reaches a stable 

value above 28ºC (after a decrease), and even increases above 30ºC during the last week. 

The interpretation of the daily evolution is clearer if we look at the evolution during 2 days – 

Figure 3.6.7 – where the collector inlet and outlet temperatures are also represented. At the start 

of the sunlight period the collectors start collecting solar radiation, and with the increase in 

incident solar radiation the pool water heats up. The temperature rise in the collectors achieves 

a maximum of about 8ºC. Then, at the end of the sunlight period, the collector contribution 

reduces, and pool heat losses increase, which leads to the slight pool temperature reduction. 

This reduction could be avoided (or minimised) if the pool cover was placed sooner than 18:00. 

Figure 3.6.8 shows the schedule of cover and collector pump use. It would be beneficial to 

better match the 2 schedules, removing and placing the cover at about the same time as the 

pumps switch on and off (respectively). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.7 – Evolution of pool water and collector temperatures during two days. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.8 – Evolution of cover and pump factors during two days. 
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Figure 3.6.9 shows the different pool heat losses (radiative, convective and evaporative), 

compared with the solar radiation directly absorbed by the pool surface. Note that in certain 

periods the direct absorption exceeds the sum of all losses, meaning that the pool water is then 

heated, even without the collector contribution. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.9 –Evolution of pool absorbed solar radiation and pool heat losses during two days. 

It is also evident that evaporation losses represent the highest share of losses. To estimate the 

total loss of liquid water we may add to the Equations Window an accumulating variable, 

summing all the evaporation flowrates over time, when the cover is removed: 

 Mp,evap = Mp,evap,old + 𝑓𝑐𝑜𝑣𝑒𝑟 ∗ Q̇evap/∆ℎ𝑙𝑣 ∗ Δ𝑡                                             (3.6.12) 

Adding this variable to the Equations Window and Parametric Table, and defining Mp,evap,old 

as the previous run value (starting at zero), the result for the 25 simulated days is that 9.4% of 

the initial 500 tons of water evaporate, and should be compensated by introducing fresh water. 

The impact on the total energy balance is not very significant: water evaporation is compensated 

by adding fresh water, at the mains temperature, which represents an energy input; however, its 

enthalpy is much lower than the enthalpy of vaporisation, and therefore negligible. 
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4 Distributed and combined modelling examples 

This chapter presents several examples of numerical models applied to thermal systems, using 

a distributed approach. In some cases a distributed model is used for some system components, 

and a global model for other components, and thus a combination of the two is used. The models 

are first discussed, and then EES is used as a tool to obtain the solutions and perform 

parametric/sensitivity analyses. The EES equations/codes are also presented. Most of the 

examples are related to dynamic situations, with temperatures and other properties varying 

along time.  

As remarked in chapter 2, in the UK/USA system the dot is used as a decimal point, while in 

most European countries a decimal comma is used. In this book, the decimal comma is used, 

and this affects the use/appearance of some instructions and functions, when compared with the 

EES software manual: as a comma replaces the dot, the sign for semicolon (;) is used to replace 

the comma. 

4.1 Steady-state conduction, convection and radiation in a rod  

An horizontal steel rod (k=15 W/mK) with the 

dimensions shown in the picture has one extremity 

kept at 100ºC. The rod surface transfers heat to the 

surrounding air at 20ºC by free convection, and 

exchanges radiation with indoor surfaces, which are 

kept at 20ºC. The rod surface may be assumed as gray 

and diffuse, with ==0.8.  

Assuming the rod temperature only varies along its length, calculate the temperature with the 

finite volume method with x=1 cm. Also calculate the dissipated heat. 

 

 

Assuming the temperature variation along the rod radius is negligible, due to its small diameter 

and good conductivity, the steady-state temperature distribution is only a function of the length 

coordinate (x). The problem would have an analytical solution if the outside heat transfer 

coefficient was constant along x. However, both free convection and thermal radiation lead to 

a variable coefficient: the free convection coefficient depends on the temperature difference 

between the rod and outside air, and radiation exchanges depend on temperatures to the power 

of 4. Therefore, a numerical solution is needed to obtain 𝑇(𝑥). 
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Figure 4.1.1 – Rod and dimensions. 
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Figure 4.1.2 – Finite volume and its heat exchanges. 

Using the finite volumes method, the equation for an internal volume takes into account all heat 

transfer fluxes across its boundaries – see Figure 6.1.2. The energy balance is given by the 

equation 

𝑘

∆𝑥
𝐴𝑠(𝑇𝑖−1 − 𝑇𝑖) =

𝑘

∆𝑥
𝐴𝑠(𝑇𝑖 − 𝑇𝑖+1) + ℎ𝑖𝑃∆𝑥(𝑇𝑖 − 𝑇𝑒𝑥𝑡) + 𝜀 𝜎 𝑃∆𝑥(𝑇𝑖

4 − 𝑇𝑒𝑥𝑡
4 )(4.1.1) 

where 𝐴𝑠 is the conduction (section) area and 𝑃∆𝑥 the convection and radiation (surface) area 

(𝑃 is the perimeter of the section, equal to 2𝜋𝑅). 

The above equation is repeated for all internal volumes, that is, for 𝑖 = 2 until 20. The first and 

last volumes have special conditions. For the first volume/node (𝑖 = 1) the temperature is 

imposed at 100ºC. In the last volume/node (𝑖 = 21) there is conduction with the previous 

volume and also convection and radiation exchanged by the top circular surface. The equation 

for this volume/node, with a length equal to ∆𝑥 2⁄ , is: 

𝑘

∆𝑥
𝐴𝑠(𝑇20 − 𝑇21) = ℎ𝑖𝑃

∆𝑥

2
(𝑇21 − 𝑇𝑒𝑥𝑡) + 𝜀 𝜎 𝑃

∆𝑥

2
(𝑇21

4 − 𝑇𝑒𝑥𝑡
4 ) +

                                                + ℎ𝑡𝑜𝑝𝐴𝑠(𝑇21 − 𝑇𝑒𝑥𝑡) + 𝜀 𝜎 𝐴𝑠(𝑇21
4 − 𝑇𝑒𝑥𝑡

4 )            (4.1.2) 

When implementing the set of 21 equations to calculate the 21 temperatures, the Duplicate 

instruction was used to repeat equation (4.1.1), from 𝑖 = 2 to 20. The EES heat transfer 

correlation database was used to calculate the 21 values of ℎ𝑖, as a function of (𝑇𝑖 − 𝑇𝑒𝑥𝑡). For 

that, an horizontal cylinder geometry exposed to quiet air was assumed, with varying surface 

temperature, that is, neglecting the influence that neighbour boundary layers of the free 

convection flows might have. 

Figure 4.1.3 shows the Equation Windows that defines the problem conditions and set of 

equations. Array variables were used for the 𝑥 coordinate (𝑥[𝑖]), the temperature (𝑇[𝑖]), and the 

convection coefficient (ℎ[𝑖]). For the convection coefficient on the top surface ( ℎ𝑡𝑜𝑝, at 𝑥=L) 

a different correlation from the literature was used, [7], as the vertical disk geometry is not 

available in the EES database. Figure 4.1.4 presents the Formatted Equations. 

Other array variables used were 𝑄̇𝑐𝑜𝑛𝑣[𝑖], 𝑄̇𝑟𝑎𝑑[𝑖] and 𝑄̇[𝑖],  to calculate the convective, 

radiative, and total heat transfer rates of each volume. Then, using the SUM function, the total 

heat transfer rates in all volumes were calculated (𝑄̇𝑐𝑜𝑛𝑣,𝑡𝑜𝑡𝑎𝑙, 𝑄̇𝑟𝑎𝑑,𝑡𝑜𝑡𝑎𝑙 and 𝑄̇𝑡𝑜𝑡𝑎𝑙) 

Figure 4.1.5 presents the results in the Arrays Table, for the 21 nodes considered. Figure 4.1.6 

presents the temperature distribution and heat transfer coefficients, while Figure 4.1.7 presents 

the distribution of heat transfer rates. The temperature varies significantly from 100ºC down to 

32.58ºC at the top. Note that the convective coefficient at the top circular surface is significantly 

higher, even with a lower temperature. Concerning the heat rates, they follow the temperature 

variation, with the lower values in the first volume/node due to its smaller size (∆𝑥/2). 
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Figure 4.1.3 – Equations Window for the rod heat transfer example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.4 – Formatted Equations Window for the rod heat transfer example. 
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Figure 4.1.5 – Arrays Table for the rod heat transfer example. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.6 – Temperature distribution and convective coefficients for the rod heat transfer example. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.7 – Heat transfer rates for the rod heat transfer example. 
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4.2 Dynamic heat transfer in a Trombe wall 

The figure represents a wall that also acts as a solar 

collector (Trombe wall). Solar radiation reaches the 

outside surface, protected by a glass pane with a 

transmittance of 0.85 and an absorptance of 0.1 for solar 

radiation wavelengths. The glass is opaque to longwave 

radiation, and has an emissivity of 0.8 (equal to the 

absorption coefficient for longer wave radiation). The 

concrete wall has an absorptance and an emissivity equal 

to 0.9 (all wavelengths). The distance between the glass 

pane and the wall is equal to 10 cm (filled with air), and 

the wall thickness and height are 0.2 and 2.5 m.  

The indoor temperature is kept at 20ºC, and the indoor and external convective heat transfer 

coefficients are 5 and 20 W/m2ºC, respectively. 

During a Winter day, the incident solar radiation on a vertical surface and the outdoor ambient 

temperature vary according to the table below. 
 

hour 1 2 3 4 5 6 7 8 9 10 11 12 

Tamb (ºC) 10.7 10.5 10.4 10.2 10.2 10.0 9.9 10.3 11.4 12.5 13.4 14.1 

𝐼𝑠𝑜𝑙 (W/m2) 0 0 0 0 0 22 50 75 158 237 300 325 
 

hour 13 14 15 16 17 18 19 20 21 22 23 24/ 0 

Tamb (ºC) 14.7 15.2 15.2 15.3 14.7 14.0 12.8 12.2 11.7 11.3 11.1 10.8 

𝐼𝑠𝑜𝑙  (W/m2) 316 276 187 73 55 43 20 0 0 0 0 0 

Considering an initial wall temperature distribution to be defined, obtain the wall temperature 

evolution during one day, by discretising the wall with the equally spaced 5 volumes/nodes 

represented in the figure. Calculate the variation of the heat transfer rate to the indoor space. 

Analyse the effect of varying the time step and number of nodes on the results. 

 

 

A distributed model will be applied to the wall, modelling the heat transfer along its thickness. 

The glass pane will be considered at a uniform temperature (global approach). All temperatures 

will vary along time (dynamic situation). 

As seen in section 1.3.2, using the implicit formulation, the discretised equation for the internal 

wall volumes (2 to 4) is 

𝜌 𝑐𝑝 ∆𝑥 
(𝑇𝑖

𝑡+∆𝑡−𝑇𝑖
𝑡)

∆𝑡
=

𝑘

∆𝑥
(𝑇𝑖+1

𝑡+∆𝑡 + 𝑇𝑖−1
𝑡+∆𝑡 − 2𝑇𝑖

𝑡+∆𝑡)                                                   (4.2.1) 

while for 𝑖 = 1 we will have conduction and convection with indoor air: 

𝜌 𝑐𝑝  
∆𝑥

2
 

(𝑇1
𝑡+∆𝑡−𝑇1

𝑡)

∆𝑡
= ℎ𝑖(𝑇𝑖𝑛𝑡 − 𝑇1

𝑡+∆𝑡) +
𝑘

∆𝑥
(𝑇2

𝑡+∆𝑡 − 𝑇1
𝑡+∆𝑡)                                       (4.2.2) 

For the wall external volume (𝑖 = 5) we need to consider the transfer by conduction, the free 

convection in the air gap between the wall and the glass (rectangular enclosure), the longwave 
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      Figure 4.2.1 – Trombe wall. 
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thermal radiation balance between those two surfaces, and the solar radiation absorbed by the 

wall (transmitted through the glass): 

𝜌 𝑐𝑝
∆𝑥

2
 
(𝑇5

𝑡+∆𝑡−𝑇5
𝑡)

∆𝑡
=

𝑘

∆𝑥
(𝑇4

𝑡+∆𝑡 − 𝑇5
𝑡+∆𝑡) − ℎ𝑔𝑤

𝑡+∆𝑡(𝑇5
𝑡+∆𝑡 − 𝑇𝑔

𝑡+∆𝑡) −
𝜎(𝑇5

𝑡+∆𝑡4
−𝑇𝑔

𝑡+∆𝑡4
)

1

𝜀𝑤
+

1

𝜀𝑔
 −1

+

                                                                                                                                  + 𝛼𝑤𝜏𝑔𝐼𝑠𝑜𝑙
𝑡+∆𝑡          (4.2.3) 

For the glass energy balance, its thermal inertia is neglected (small thickness), and therefore we 

have a quasi-steady state equation: 

ℎ𝑔𝑤
𝑡+∆𝑡(𝑇5

𝑡+∆𝑡 − 𝑇𝑔
𝑡+∆𝑡) +

𝜎(𝑇5
𝑡+∆𝑡4

−𝑇𝑔
𝑡+∆𝑡4

)

1

𝜀𝑤
+

1

𝜀𝑔
 −1

+ 𝛼𝑔𝐼𝑠𝑜𝑙
𝑡+∆𝑡 = ℎ𝑒(𝑇𝑔

𝑡+∆𝑡 − 𝑇𝑎𝑚𝑏
𝑡+∆𝑡) +

                                                                                                         + 𝜀𝑔 𝜎 (𝑇𝑔
𝑡+∆𝑡4

− 𝑇𝑎𝑚𝑏
𝑡+∆𝑡4

)           (4.2.4) 

Starting with an initial temperature distribution, equations (4.2.1) – representing 3 equations – 

to (4.2.4) allow the calculation of the 5 wall temperatures and glass temperature, for all instants 

(𝑡 + ∆𝑡). The wall-glass enclosure convective coefficient (ℎ𝑔𝑤) is a function of the temperature 

difference (𝑇5−𝑇𝑔), and will also be calculated along time. 

Figure 4.2.2 presents the Equations Window and Figure 4.2.3 the Formatted Equations 

Window. Besides the dimensions and properties, and the previous equations, the climatic 

variables (ambient temperature and solar radiation) for each time are interpolated from the 

hourly values introduced in the Lookup Table (“Lookup 1” – see Figure 4.2.4). The Duplicate 

instruction is used to write the equations for the 3 internal nodes. The EES Procedure 

Tilted_Rect_Enclosure, from its heat transfer database, is used to calculate ℎ𝑔𝑤, as a function 

of  (𝑇5−𝑇𝑔). The heat flux exchanged between the wall and the indoor space is also calculated 

(q_dot_int, or 𝑞̇𝑖𝑛𝑡). A Parametric Table (“Table 1”) is created with several rows, each for a 

given instant of time (step DELTAt), and the previous temperature values are read from the 

previous row (row number “row-1”). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.2 –Equations Window for the Trombe wall example. 
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Figure 4.2.3 – Formatted Equations Window for the Trombe wall example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.4 – Lookup Table with hourly climatic data for the Trombe wall example. 
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Figure 4.2.5 shows the first rows of “Table 1”. For a ∆𝑡 of 60 s, a total of 1441 rows were 

created (24 hour simulation). The initial (first row) wall temperature values were obtained after 

a couple of simulations starting with a fixed initial value of 22ºC; they represent a daily cycle, 

and are equal to the temperatures at the end of the day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.5 – First rows for Parametric Table “Table 1” in the Trombe wall example. 

Figure 4.2.6 shows a graph with the evolution of wall temperatures (internal and external 

surfaces) and glass temperature. Note the higher temperature swing of the external wall surface, 

which reaches about 34ºC, and that at night the external surface becomes colder than the indoor 

surface. The glass temperature closely follows the outdoor ambient temperature. Figure 4.2.7 

shows the evolution of the ℎ𝑔𝑤 free convection coefficient. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.6 –Time evolution of several temperatures in the Tromble wall example. 
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Figure 4.2.7 – Evolution of the free convection coefficient (wall-glass enclosure). 

The effect of the time step, and also number of volumes/nodes, were analysed by increasing ∆𝑡 

five times to 300 s, and decreasing the number of nodes to only 3. Figure 4.2.8 shows the effect 

in the wall temperature profiles. The larger time step leads to a slight time delay in following 

the temperature changes, especially in the external wall surface, but differences are not very 

significant. Even the use of only 3 nodes leads to acceptable results. In this case, there is no 

practical interest in increasing the number of nodes. That is the reason why some software tools 

dedicated to building envelope thermal simulation only use 3 nodes in each wall. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2.8 – Wall temperature profiles (internal and external surfaces) for different time steps and number of 

nodes. 

Figure 4.2.9 analyses the evolution of the heat flux exchanged between the wall and the indoor 

space. It is always positive, that is, the wall heats the indoor space even with lower outside 

ambient temperatures. It is noticeable that the maximum flux occurs at the end of the evening, 

several hours after the maximum temperature on the wall external surface. This is the 

consequence of the wall thermal inertia. Therefore, the use of a Trombe wall is adequate in 

indoor spaces used in the evenings and early night periods. Again, the differences when using 

only 3 nodes and a larger time step of 300 seconds are small, and more significant during the 

early hours of the day. 
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Figure 4.2.9 also shows a comparison with the indoor heat flux for a “normal” wall, without the 

outside glazed surface. In that case, the heat flux would always be negative, meaning that the 

wall and the indoor space would loose heat throughout the day to the outside ambient air. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.9 – Evolution of the heat flux to the indoor space for different discretisations and a non-glazed wall. 

The wall thermal performance can be improved with the use of a selective coating on its outside 

surface. In this example the external wall surface had an emissivity for longwave radiation equal 

to its solar absorptance (0.9). The use of a selective coating may reduce the emissivity 

associated with the loss of thermal radiation to much lower values (<0.1), while maintaining 

the same solar absorptance, increasing the wall temperatures and indoor heat flux. 

 

4.3 Dynamic heat transfer in a ventilated Trombe wall 

Consider a ventilated Trombe wall, as shown in the 

picture. The indoor air circulates by thermosyphon effect 

in the space between a glazing and a concrete wall, in a 

rectangular channel with a thickness of 10 cm. The 

concrete wall has a thickness of 20 cm, a width of 3 m and 

a height (between air inlet/outlet) of 2 m. Indoor air is 

always at 20ºC, with an indoor heat transfer coefficient of 

5 W/m2K.  

The outside glazing is a double pane glazing, with a global transmission coefficient for solar 

radiation of 0.72 (constant), and with an overall heat transfer coefficient from the internal pane 

to the outside (including radiation and external convection) of 2.2 W/m2K. The glazing solar 

absorptivity is equal to 0.1 and its emissivity for longwave radiation is 0.8 (equal to the 

absorption coefficient); the glazing is opaque to longwave radiation. The concrete wall has an 

absorptance and an emissivity equal to 0.9 (all wavelengths). 

Using an EES model, obtain the wall temperature evolution during a Winter day (the same as 

defined in example 4.2), by discretising the wall with 5 equally spaced nodes along its thickness, 

and also the heat transfer rate from the wall to the indoor space. Use a global model for the air 
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      Figure 4.3.1 – Ventilated Trombe wall. 
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flow in the ventilated space, considering only inlet and outlet temperatures; for that flow, use 

friction losses only in the channel between wall and glass, and assume an overall local pressure 

loss coefficient of 3 (referred to the channel velocity). 

 

 

The concrete wall will be modelled by assuming its temperature varies only along its thickness. 

This is a simplification, as in reality the temperature also changes in the vertical direction, as 

the circulating air temperature also changes. For the air flow, a global model approach will be 

followed, considering in each flow section the mixed mean (average) flow temperature. And 

the heat exchange between the air and channel surfaces (wall and glass) will be treated by 

considering the efficiency of heat transfer (and convection coefficient), without the need of 

obtaining the temperature evolution in the flow direction; this means that the average outlet air 

temperature will be related to the inlet temperature, flow rate and surface temperatures. And 

the air flow rate will be obtained after an hydraulic balance between the pressure drop and the 

buoyancy effect cause by its heating.    

The distributed wall model is similar to the one in the previous section, with equations (4.2.1) 

and (4.2.2) expressing the temperatures of nodes 1 to 4. However, the equation for the external 

wall surface (volume/node 5) needs to be modified to take into account the channel air flow. 

The same happens with the glazing balance (internal pane). 

The global approach to the air flow heat transfer follows the scheme in Figure 4.3.2. 

 

 

 

 

 

 

Figure 4.3.2 – Channel flow heat transfer. 

Using the efficiencies of the steady-state transfer of heat with the 2 channel surfaces, we may 

calculate each heat transfer rate as a function of surface temperature and inlet air temperature. 

For the transfer between wall and air, using the forced convection coefficient (ℎ𝐹𝐶), we may 

write 

𝑄̇𝑤−𝑎𝑖𝑟 = 𝜀𝑤−𝑎𝑖𝑟  𝑄̇𝑖𝑑𝑒𝑎𝑙 = [1 − 𝑒𝑥𝑝 (−
ℎ𝐹𝐶𝐴𝑤

𝑀̇𝑐𝑝,𝑎𝑖𝑟
)] 𝑀̇𝑐𝑝,𝑎𝑖𝑟(𝑇[5] − 𝑇𝑎𝑖𝑟,𝑖𝑛)                (4.3.1) 

and for the transfer between glass and air, assuming the same convection coefficient in both 

surfaces, which is a simplification, we may write 

𝑄̇𝑔−𝑎𝑖𝑟 = 𝜀𝑔−𝑎𝑖𝑟  𝑄̇𝑖𝑑𝑒𝑎𝑙 = [1 − 𝑒𝑥𝑝 (−
ℎ𝐹𝐶𝐴𝑔

𝑀̇𝑐𝑝,𝑎𝑖𝑟
)] 𝑀̇𝑐𝑝,𝑎𝑖𝑟(𝑇𝑔 − 𝑇𝑎𝑖𝑟,𝑖𝑛)                   (4.3.2) 

Then, the heat rate exchanged by the air with the wall and glass will change the air temperature 

between inlet and outlet: 

𝑄̇𝑎𝑖𝑟 = 𝑄̇𝑤−𝑎𝑖𝑟 + 𝑄̇𝑔−𝑎𝑖𝑟 = 𝑀̇𝑐𝑝,𝑎𝑖𝑟(𝑇𝑎𝑖𝑟,𝑜𝑢𝑡 − 𝑇𝑎𝑖𝑟,𝑖𝑛)                                                    (4.3.3) 
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The air flow rate is also unknown, and will be calculated after an hydraulic balance, stating that 

there is a (quasi-steady state) balance between the air flow pressure drop and the buoyancy 

effect due to air heating. We may write: 

𝜌
𝑎𝑖𝑟

 𝑔 𝛽 (𝑇𝑎𝑖𝑟,𝑜𝑢𝑡 − 𝑇𝑎𝑖𝑟,𝑖𝑛) ∆𝐻 = (∑ 𝐾𝑖𝑖 + 𝑓
∆𝐻

𝐷ℎ
) 𝜌

𝑎𝑖𝑟

𝑣𝑎𝑖𝑟
2

2
             (4.3.4) 

with the average air velocity (𝑣) easily related to the flow rate. The sum of local pressure loss 

coefficients (𝐾𝑖) was given as equal to 3, and the friction factor (𝑓) will be calculated through 

the available EES procedure (the same to be used to calculate the heat transfer coefficient). 

Equations (4.3.3) and (4.3.4) will be added to the model, to be able to calculate 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡 and 𝑀̇, 

and equations (4.3.1) and (4.3.2) will be used in the equations for node 5 and glass internal 

pane, which will become: 

𝜌 𝑐𝑝
∆𝑥

2
 
(𝑇5

𝑡+∆𝑡−𝑇5
𝑡)

∆𝑡
=

𝑘

∆𝑥
(𝑇4

𝑡+∆𝑡 − 𝑇5
𝑡+∆𝑡) −

𝑄̇𝑤−𝑎𝑖𝑟
𝑡+∆𝑡

𝐴𝑤
−

𝜎(𝑇5
𝑡+∆𝑡4

−𝑇𝑔
𝑡+∆𝑡4

)

1

𝜀𝑤
+

1

𝜀𝑔
 −1

+ 𝛼𝑤𝜏𝑔𝐼𝑠𝑜𝑙
𝑡+∆𝑡   (4.3.5)  

and 

𝜎(𝑇5
𝑡+∆𝑡4

−𝑇𝑔
𝑡+∆𝑡4

)

1

𝜀𝑤
+

1

𝜀𝑔
 −1

+ 𝛼𝑔𝐼𝑠𝑜𝑙
𝑡+∆𝑡 −

𝑄̇𝑔−𝑎𝑖𝑟
𝑡+∆𝑡

𝐴𝑔
= 𝑈𝑔(𝑇𝑔

𝑡+∆𝑡 − 𝑇𝑎𝑚𝑏
𝑡+∆𝑡)                                               (4.3.6) 

The complete model includes then equations (4.2.1) - 3 equations, (4.2.3), (4.3.3), (4.3.4) (4.3.5) 

and (4.3.6). A total of 8 equations to calculate  𝑇[1] to 𝑇[5], 𝑇𝑔, 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡 and 𝑀̇. The convective 

coefficient (ℎ𝐹𝐶) is also required and will be calculated from the EES heat transfer correlation 

database, assuming there is forced convection in the channel. Actually, this is a situation where, 

due to the low air velocities, mixed convection may occur. But, by calculating the coefficients 

for separate forced and free convection, it was found that they have the same order of 

magnitude; therefore, the mixed convection coefficient will be similar. It will however change 

over time, due to the change in air flow rates. 

Figure 4.3.3 presents the Equations Window and Figure 4.3.4 the Formatted Equations Window 

associated to this model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3 –Equations Window for the ventilated Trombe wall example. 
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Figure 4.3.4 –Formatted Equations Window for the ventilated Trombe wall example. 

The EES Procedure Ductflow, from its Heat Transfer & Fluid Flow database, was chosen to 

calculate both the forced convection coefficient in the air channel, and the flow friction factor, 

as a function of air flow rate and (physical and geometrical) properties.  

The heat flux exchanged between the wall and the indoor space is also calculated (q_dot_int, 

or 𝑞̇𝑖𝑛𝑡), by summing 2 different contributions: the flux transferred from the internal wall 

surface by convection (𝑞̇𝑖𝑛𝑡,𝑤), and the heat rate transported by the heated air that re-enters the 

indoor space (𝑞̇𝑖𝑛𝑡,𝑎𝑖𝑟). The climatic variables (ambient temperature and solar radiation) for 

each time are interpolated from the hourly values introduced in the Lookup Table (“Lookup 1” 

– the same as in Figure 4.2.4). 

Figure 4.3.5 shows the first rows of “Table 1”. For a ∆𝑡 of 60 s, a total of 1441 rows were 

created (24 hour simulation). The initial (first row) wall temperature values were obtained after 
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a couple of simulations starting with a fixed initial value; they represent a daily cycle, and are 

equal to the temperatures at the end of the day. 

 

 

 

 

 

 

 

Figure 4.3.5 – First rows for Parametric Table “Table 1” in the ventilated Trombe wall example. 

Figure 4.3.6 shows a graph with the evolution of wall temperatures (internal and external 

surfaces), internal glass temperature and air outlet temperature. The variation of wall surface 

temperatures is similar to Figure 4.2.6 (non-ventilated wall), but, due to the use of a more 

insulating double glazing, the temperatures are higher. A maximum of 36ºC occurs on the 

external wall surface. The inside glazing temperature is also significantly higher, compared to 

the non-ventilated single glazed wall; it is most of the time higher than the air inlet temperature 

(20ºC). The air is heated in the channel during the whole 24 hour period, achieving a maximum 

of 22.7ºC at 14:00.  

 

 

 

 

 

 

 

 

Figure 4.3.6 –Time evolution of several temperatures in the ventilated Tromble wall example. 

Figure 4.3.7 shows the evolution of the air flow rate (𝑀̇), as well as the forced convection 

coefficient (ℎ𝐹𝐶) in the channel. As can be seen, the flow rate is always positive (upward 

direction), with a maximum value at 14:00. The convection coefficient more or less follows the 

same pattern. However, there is an instability associated with the EES Ductflow calculation, 

which is related with the transition zone from laminar to turbulent flow. This is better 

understood with the representation of Figure 4.3.8, where the Reynolds number is shown. 

However, this does not modify the main results and conclusions. 
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Figure 4.3.7 – Evolution of channel air flow rate and convective heat transfer coefficient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.8 – Evolution of Reynolds number and convective heat transfer coefficient. Red line for Re=2300. 

 

Figure 4.3.9 analyses the evolution of the heat flux exchanged between the wall and the indoor 

space. It also represents the 2 different components: surface convection and airflow. In this wall 

the maximum heat input (about 90 W/m2) occurs at about 15:00, sooner than in the case of the 

unventilated wall of section 4.2, where the maximum occurred at 18:00. This is due to the faster 

removal of the heat stored in the wall when air circulation is used. The ventilation contribution 

is higher at 14:00. Therefore, this ventilated Trombe wall is more adequate to indoor spaces 

that are used in the afternoon. 

Figure 4.3.10 compares the heating contribution of this ventilated wall with a non-ventilated 

wall, also using double glazing. The ventilated wall has a larger heat flux swing, with an earlier 

peak. A comparison is also made with an unglazed wall, which as seen in section 4.2 has a 

negative performance, loosing heat to the outside environment. 
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Figure 4.3.9 – Evolution of the heat flux to the indoor space in the ventilated Trombe wall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.10 – Evolution of the heat flux to the indoor space for the ventilated wall, an unventilated wall with 

double glazing and an unglazed wall. 

 

4.4 Car glass heating system (dynamic)  

To eliminate vapour condensation 

in the rear glass of a car, very 

small electric wires are connected 

to the glass inner surface. The 

wires have a spacing of  4 cm and 

generate a heating rate of 10 W 

per meter of glass width when 

electric current runs through 

them. 4
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      Figure 4.4.1 – Car glass discretisation. 
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The glass is 4 mm thick and has a thermal conductivity k=0.84 W/mºC and a thermal diffusivity 

 = k//cp = 0.39x10-6 m2/s. 

Starting from an initial situation when the glass, internal and external temperatures are all equal 

to 5ºC, obtain the glass temperature distribution after 15 minutes. The inside and outside heat 

transfer coefficients remain constant at 6 and 20 W/m2ºC, respectively. Indoor and outdoor 

temperatures also remain constant. Use a grid with nodes spaced 1 mm along the glass thickness 

and 5 mm along the vertical direction. The presence of condensate on the glass external surface 

may be neglected. 

Repeat the calculation if the indoor temperature is kept at 15ºC, with a constant external 

temperature of 5ºC and an initial glass temperature of 5ºC. 

 

 

Using the finite volumes method, the glass will be discretised in 2D. Variations along the width 

direction are neglected. Figure 4.4.2 shows the region to consider, according to the values of 

∆𝑥 and ∆𝑦 imposed. Only half of the distance between electric wires needs to be considered, as 

there is symmetry at mid-distance between wires (𝑖 = 5). There is also symmetry at the 𝑖 = 1 

surface, with half of the input power (5 W/m) distributed upwards and half downwards. 

Therefore, only 5 × 5 nodes/volumes need to be considered. 

 

 

 

 

 

 

 

  

Figure 4.4.2 – Nodes and different types of volumes.  

There are 9 internal volumes, 6 surface half-volumes with convection (at 𝑗 = 1 and 5), 6 half-

volumes in symmetry planes (at 𝑖 = 1 and 5), and 4 corner volumes. 

Using the implicit method, the discretised equations for the internal volumes (𝑖 = 2 to 4, and 

𝑗 = 2 to 4) are 

𝜌 𝑐𝑝∆𝑥∆𝑦 
(𝑇𝑖,𝑗

𝑡+∆𝑡−𝑇𝑖,𝑗
𝑡 )

∆𝑡
=

𝑘

∆𝑥
∆𝑦(𝑇𝑖,𝑗−1

𝑡+∆𝑡 + 𝑇𝑖,𝑗+1
𝑡+∆𝑡 − 2𝑇𝑖,𝑗

𝑡+∆𝑡) +

                                                      +
𝑘

∆𝑦
∆𝑥(𝑇𝑖−1,𝑗

𝑡+∆𝑡 + 𝑇𝑖+1,𝑗
𝑡+∆𝑡 − 2𝑇𝑖,𝑗

𝑡+∆𝑡)                                                (4.4.1) 

or 

𝜌 𝑐𝑝

(𝑇𝑖,𝑗
𝑡+∆𝑡−𝑇𝑖,𝑗

𝑡 )

∆𝑡
=

𝑘

∆𝑥2
(𝑇𝑖,𝑗−1

𝑡+∆𝑡 + 𝑇𝑖,𝑗+1
𝑡+∆𝑡 − 2𝑇𝑖,𝑗

𝑡+∆𝑡) +
𝑘

∆𝑦2
(𝑇𝑖−1,𝑗

𝑡+∆𝑡 + 𝑇𝑖+1,𝑗
𝑡+∆𝑡 − 2𝑇𝑖,𝑗

𝑡+∆𝑡)(4.4.2) 
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For the surface half-volumes with convection (𝑗 = 1 and 5, with 𝑖 = 2 to 4): 

𝜌 𝑐𝑝
∆𝑥

2
∆𝑦 

(𝑇𝑖,1
𝑡+∆𝑡−𝑇𝑖,1

𝑡 )

∆𝑡
=

𝑘

∆𝑥
∆𝑦(𝑇𝑖,2

𝑡+∆𝑡 − 𝑇𝑖,1
𝑡+∆𝑡) +

                                                 +
𝑘

∆𝑦

∆𝑥

2
(𝑇𝑖−1,1

𝑡+∆𝑡 + 𝑇𝑖+1,1
𝑡+∆𝑡 − 2𝑇𝑖,1

𝑡+∆𝑡) + ℎ𝑖𝑛𝑡∆𝑦(𝑇𝑖𝑛𝑡 − 𝑇𝑖,1
𝑡+∆𝑡)     (4.4.3) 

and 

𝜌 𝑐𝑝
∆𝑥

2
∆𝑦 

(𝑇𝑖,5
𝑡+∆𝑡−𝑇𝑖,5

𝑡 )

∆𝑡
=

𝑘

∆𝑥
∆𝑦(𝑇𝑖,4

𝑡+∆𝑡 − 𝑇𝑖,5
𝑡+∆𝑡) +

                                                +
𝑘

∆𝑦

∆𝑥

2
(𝑇𝑖−1,5

𝑡+∆𝑡 + 𝑇𝑖+1,5
𝑡+∆𝑡 − 2𝑇𝑖,5

𝑡+∆𝑡) + ℎ𝑒𝑥𝑡∆𝑦(𝑇𝑒𝑥𝑡 − 𝑇𝑖,5
𝑡+∆𝑡)      (4.4.4) 

For the surface half-volumes in symmetry planes (𝑖 = 1 and 5, with 𝑗 = 2 to 4): 

𝜌 𝑐𝑝∆𝑥
∆𝑦

2
 

(𝑇1,𝑗
𝑡+∆𝑡−𝑇1,𝑗

𝑡 )

∆𝑡
=

𝑘

∆𝑥

∆𝑦

2
(𝑇1,𝑗−1

𝑡+∆𝑡 + 𝑇1,𝑗+1
𝑡+∆𝑡 − 2𝑇1,𝑗

𝑡+∆𝑡) +

                                                                                                                +
𝑘

∆𝑦
∆𝑥(𝑇2,𝑗

𝑡+∆𝑡 − 𝑇1,𝑗
𝑡+∆𝑡)      (4.4.5) 

and 

𝜌 𝑐𝑝∆𝑥
∆𝑦

2
 

(𝑇5,𝑗
𝑡+∆𝑡−𝑇5,𝑗

𝑡 )

∆𝑡
=

𝑘

∆𝑥

∆𝑦

2
(𝑇5,𝑗−1

𝑡+∆𝑡 + 𝑇5,𝑗+1
𝑡+∆𝑡 − 2𝑇5,𝑗

𝑡+∆𝑡) +

                                                                                                                +
𝑘

∆𝑦
∆𝑥(𝑇4,𝑗

𝑡+∆𝑡 − 𝑇5,𝑗
𝑡+∆𝑡)      (4.4.6) 

Finally, for the 4 corners we have: 

𝜌 𝑐𝑝
∆𝑥

2

∆𝑦

2
 

(𝑇1,1
𝑡+∆𝑡−𝑇1,1

𝑡 )

∆𝑡
=

𝑘

∆𝑥

∆𝑦

2
(𝑇1,2

𝑡+∆𝑡 − 𝑇1,1
𝑡+∆𝑡) +

𝑘

∆𝑦

∆𝑥

2
(𝑇2,1

𝑡+∆𝑡 − 𝑇1,1
𝑡+∆𝑡)  +

                                                                                                        +ℎ𝑖𝑛𝑡
∆𝑦

2
(𝑇𝑖𝑛𝑡 − 𝑇1,1

𝑡+∆𝑡) + 5       (4.4.7) 

𝜌 𝑐𝑝
∆𝑥

2

∆𝑦

2
 

(𝑇1,5
𝑡+∆𝑡−𝑇1,5

𝑡 )

∆𝑡
=

𝑘

∆𝑥

∆𝑦

2
(𝑇1,4

𝑡+∆𝑡 − 𝑇1,5
𝑡+∆𝑡) +

𝑘

∆𝑦

∆𝑥

2
(𝑇2,5

𝑡+∆𝑡 − 𝑇1,5
𝑡+∆𝑡)  +

                                                                                                                +ℎ𝑒𝑥𝑡
∆𝑦

2
(𝑇𝑒𝑥𝑡 − 𝑇1,5

𝑡+∆𝑡)       (4.4.8) 

𝜌 𝑐𝑝
∆𝑥

2

∆𝑦

2
 

(𝑇5,1
𝑡+∆𝑡−𝑇5,1

𝑡 )

∆𝑡
=

𝑘

∆𝑥

∆𝑦

2
(𝑇5,2

𝑡+∆𝑡 − 𝑇5,1
𝑡+∆𝑡) +

𝑘

∆𝑦

∆𝑥

2
(𝑇4,1

𝑡+∆𝑡 − 𝑇5,1
𝑡+∆𝑡)  +

                                                                                                                 +ℎ𝑖𝑛𝑡
∆𝑦

2
(𝑇𝑖𝑛𝑡 − 𝑇5,1

𝑡+∆𝑡)       (4.4.9) 

𝜌 𝑐𝑝
∆𝑥

2

∆𝑦

2
 

(𝑇5,5
𝑡+∆𝑡−𝑇5,5

𝑡 )

∆𝑡
=

𝑘

∆𝑥

∆𝑦

2
(𝑇5,4

𝑡+∆𝑡 − 𝑇5,5
𝑡+∆𝑡) +

𝑘

∆𝑦

∆𝑥

2
(𝑇4,5

𝑡+∆𝑡 − 𝑇5,5
𝑡+∆𝑡)  +

                                                                                                                +ℎ𝑒𝑥𝑡
∆𝑦

2
(𝑇𝑒𝑥𝑡 − 𝑇5,5

𝑡+∆𝑡)    (4.4.10) 

 

These 25 equations are shown in Figures 4.4.3 – Equations Window – and 4.4.4 – Formatted 

Equations. We could also define the coordinates of the different nodes (𝑥, 𝑦), using array 

variables 𝑥[𝑗] and 𝑦[𝑖], but if we represent the temperatures as a function of 𝑗 and 𝑖, as the nodes 

are equally spaced in each direction, there is no special advantage in adding those variables. 

4
.4

 –
 C

a
r 

g
la

s
s
 h

e
a
ti
n
g
 s

y
s
te

m
 

 



                  Heat Transfer: numerical modelling with EES applications 

75 

 

 

 

 

 

 

 

 

 

  

 

  

Figure 4.4.3 – Equations Window for the car glass heating example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.4 – Formatted Equations Window for the car glass heating example.  
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As seen before, the Parametric Table (“Table 1”) expresses the different time steps (one Run 

for each time step), and contains the calculation results – Figure 4.4.5. A time step of 15 s was 

used in the simulations. As an array variable was used for the temperature, the results for the 

final simulation/Run are also available in the Arrays Table – Figure 4.4.6. 

 

 

 

 

 

 

 

 

 

Figure 4.4.5 – Parametric Table for the time simulation of the car glass heating example.  

 

 

 

 

 

 

Figure 4.4.6 – Arrays Table with calculated temperatures after 25 minutes.  

Figure 4.4.7 shows the time evolution of the temperatures of different volumes/nodes. Of 

course, the highest temperature occurs always in volume/node (1,1), as this is where the heating 

element is located. The temperatures at higher y (or i) values (farther from the wire) do not 

change significantly with x (or j). 

 

 

 

 

 

 

 

Figure 4.4.7 – Time evolution of temperatures in different nodes/volumes. 
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As Figure 4.4.7 shows, the major temperature changes occur in the initial 15 minutes. After 

about 25 minutes there is practically no further change in temperatures: steady-state is attained. 

The maximum temperature, at the wire location, is about 26ºC. The minimum temperature, 

which is important to prevent condensation, is about 11ºC. 

EES allows obtaining a graphical distribution of the temperature in the 2 directions of space, at 

a given moment. For that, you need to choose in the menu: Plots → New Plot Window → X-

Y-Z Plot; then, in the appearing window, choose Table – Arrays Table, 2-D table data, Isometric 

Lines, or Color Bands, and also define the scales – see Figure 4.4.8. With or without defining 

the coordinates of the different nodes (𝑥[𝑗] and 𝑦[𝑖]), it is also possible to obtain a 3D type 

graph, by choosing 3-D Surface. This will be shown in the example of section 4.5. That type of 

graph may be rotated to have access to different perspective views.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4.8 – Dialog window for X-Y-Z Color Bands Plot. 

Figure 4.4.9 shows colour band graphs that may be obtained from the Arrays Table. You may 

produce different graphs for different instants of time (by using the respective Arrays Table). 

In the case of Figure 4.4.9, all the graphs are valid for a time of 25 minutes. 

We should note that, because the colour bands and isothermal lines are obtained from the 

calculated node temperatures, there is the need perform an interpolation with the Arrays Table 

values; therefore, if the number of points in the Arrays Table is limited, a crude representation 

will be obtained. This may be noticed when comparing the graphs in Figure 4.4.9(a) and 

4.4.9(b). Figure 4.4.9(a) was obtained with the Arrays Table from Figure 4.4.6, using the 25 

previously calculated nodes, while Figure 4.4.9(b) was obtained with an extended number of 

nodes of 50 × 50 = 2500 nodes. The isothermal lines are significantly different, particularly 

near the electric wire region. 

As requested, the influence of changing the internal temperature to 15ºC, while maintaining the 

same external temperature and initial glass temperature at 5ºC, was analysed. It is very simple 

to introduce this modification in the problem: it is simply needed to change 𝑇𝑖𝑛𝑡 in the Equations 

Window to 15ºC, maintaining all the other values. Figure 4.4.10 presents the time evolution of 

several temperatures in the glass. The evolution is similar to Figure 4.4.7, but, as the glass looses 

less heat, the temperatures are higher: the maximum temperature is now slightly above 28ºC, 

and the minimum is above 13.5ºC. 
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a                                                             b                                         c 

Figure 4.4.9 – Temperature colour bands for the car glass heating example: (a) using 25 nodes; (b) using 2500 

nodes; (c) composition of 4 symmetrical regions in the glass. 

. 

 

 

 

 

 

 

 

 

 

Figure 4.4.10 – Time evolution of temperatures in different nodes/volumes when 𝑇𝑖𝑛𝑡 = 15 ºC. 
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4.5 Dynamic cooling of a concrete beam 

 

To increase the strength of concrete beams, they are 

subjected to a long heating cycle, up to a temperature 

of 80ºC. Consider a long concrete beam, with a 

section of 27 × 100 cm, initially at a uniform 

temperature of 80ºC. The beam is cooled to ambient 

air at 𝑇𝑒𝑥𝑡=20ºC, with a heat transfer coefficient 

ℎ𝑒𝑥𝑡=20 W/m2K in all surfaces, except the base, 

which can be considered insulated. The concrete has 

the following properties: k=1.2 W/mºC, 𝜌=2300 

kg/m3, 𝑐𝑝= 880 J/kgK.  

Obtain the temperature distribution in the beam section after 1 hour, 2 hours and 4 hours of 

cooling. Use a grid with ∆𝑥=3 cm and ∆𝑦=4 cm. Calculate the evolution of the heat transfer rate 

to the outside. 

 

 

The beam will be discretised in 2D, since its length is very large, and therefore the temperature 

is assumed to vary only in the section. Due to the symmetrical conditions, one half of the section 

could be considered, with 13.5 cm along the horizontal direction, and 100 cm along the vertical 

direction. However, we shall use the full width of 27 cm, with a grid with 10 × 26 nodes, with 

∆𝑥=3 cm and ∆𝑦=4 cm. 

The discretised equations are very similar to those in section 4.4: one for the internal nodes, 

equal to equation (4.4.1) for 8 × 24 nodes, one for each of the boundaries excluding the corners 

– bottom (8 nodes), top (8 nodes), left (24 nodes) and right (24 nodes) surfaces – and one for 

each corner, with smaller volume sizes. The top, left and right surfaces have a heat transfer 

condition, while the bottom surface has no heat transfer (adiabatic). 

The first index (𝑖) is used for 𝑦 (vertical) and the second index (𝑗) is used for 𝑥 (horizontal). 

Figure 4.5.2 presents the Formatted Equations Window and Figure 4.5.3 the Equations 

Window. Besides the temperatures, heat rate array variables – 𝑄̇𝑡𝑜𝑝[𝑗], 𝑄̇𝑙𝑒𝑓𝑡[𝑖], 𝑄̇𝑟𝑖𝑔ℎ𝑡[𝑖] – 

were defined to calculate the transfer rates to the outside in every element. Then they are 

summed to obtain the total surface transfer – 𝑄̇𝑡𝑜𝑝,𝑡𝑜𝑡𝑎𝑙, 𝑄̇𝑙𝑒𝑓𝑡,𝑡𝑜𝑡𝑎𝑙, 𝑄̇𝑟𝑖𝑔ℎ𝑡,𝑡𝑜𝑡𝑎𝑙 – and the 3 are 

finally added to obtain the total heat transfer rate, 𝑄̇𝑒𝑥𝑡. 

The Parametric Table (“Table 1”) expresses the different time steps (one Run for each time 

step), starting with all temperatures equal to 80ºC in the first row (initial condition), and 

contains the calculation results. A time step of 60 s was used in the simulations. As array 

variables were used for the temperature and heat rates, those results are also available in the 

Arrays Table, for the final simulation/Run. As the situation at 3 different moments is wanted (1 

hour, 2 hours and 4 hours), the Parametric Table can be run 3 different times, stopping in each 

time at the required moment. Then, the Arrays Table will contain the wanted temperature and 

heat rate values, that will be used to obtain graphical representations of the temperatures in the 

3 different moments. 
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      Figure 4.5.1 – Concrete beam cooling. 
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Figure 4.5.2 – Formatted Equations Window for the concrete beam cooling example. 
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Figure 4.5.3 –Equations Window for the concrete beam cooling example. 

Figure 4.5.4 presents temperature profiles in the 3 moments. They were obtained by choosing 

to represent Color Bands (after Plots → New Plot Window → X-Y-Z Plot, choosing Table – 

Arrays Table, 2-D table data, Color Bands). At any moment, the maximum temperature in the 

beam occurs at the middle of the base, and the minimum temperatures in the top corners. After 

1 hour of cooling the maximum temperature is still 78ºC and the minimum is 35ºC; after 2 hours 

the maximum temperature is 72ºC and the minimum 30ºC; after 4 hours the maximum 

temperature is 60ºC and the minimum 25ºC. By choosing “Gradient Plot” one can also represent 

the heat flux vectors, which obviously are normal to the isothermal lines – see Figure 4.5.5. 

A 3D type graph can be obtained, by choosing “3-D Surface”, and different options of scales 

and resolutions are available – see Figure 4.5.6. The resulting graph is generated by EES and 

may afterwards be rotated, allowing different perspective views of the dependent variable 

(temperature, 𝑍) as a function of 𝑋 and 𝑌 – see Figures 4.5.7 and 4.5.8. 

Figure 4.5.9 represents the time evolution of the total heat transfer rate from the beam to the 

outside, varying between 2600 W and 700 W after 4 hours. After 2 hours the transfer rate is 

already down to about 1000 W. 
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                a                                                 b                                               c 

Figure 4.5.4 – Temperature profiles during cooling: (a) after 1 hour; (b) after 2 hours; (c) after 4 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.5 – Temperature colour bands and heat fluxes after 2 hours of cooling. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.6 – Dialog window for X-Y-Z 3-D Surface Plot. 
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Figure 4.5.7 –Two views of a 3-D Surface Plot of temperature distribution after 2 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.8 –Two views of a 3-D Surface Plot of temperature distribution after 4 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.9 – Time evolution of the total heat transfer rate from the beam. 
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4.6 Dynamic heat transfer in a roof solar pond  

 

 

 

 

           a                                                                                  b 

Figure 4.6.1 – Roof solar pond: (a) Summer operation; (b) Winter operation. 

The above figure represents the operation of a roof pond, during the Summer and Winter 

seasons. The water is contained in a transparent plastic bag that does not affect heat transfer but 

prevents water evaporation. 

In Summer – Figure 4.6.1(a) – at night the water looses heat to the outside, cooling the concrete 

slab (ceiling), which allows the removal of heat from the indoor space. During the daytime an 

insulating cover is placed over the water surface, limiting the transfer of heat with the outside 

– either the absorption of solar radiation, or conduction heat gains – so that the water is kept 

colder than the slab, allowing further indoor space cooling. 

In Winter – Figure 4.6.1(b) – during the daytime the water receives solar radiation; in spite of 

the heat losses to the outside, the concrete slab (ceiling) is heated, which allows heating the 

indoor space. During the nighttime an insulating cover is placed over the water surface, limiting 

the transfer of heat with the outside, allowing further indoor space heating. 

Consider a concrete slab and ceiling with 20 m2 and a thickness of 15 cm (=2300 kg/m3, 

cp=880 J/kgK, k=1.2 W/mK) and a water pond with the same area and 20 cm thick (=1000 

kg/m3, cp=4190 J/kgK). The convection coefficient to the outside air is equal to 20 W/m2K 

(constant) and the water emissivity is equal to 0.9 (equal to the absorption coefficient). The 

emissivity of the ceiling surface is equal to 0.9. Assume the following conditions for Summer 

and Winter operation: 

• Summer: indoor space at a constant temperature of 24ºC, with a variable heat transfer 

coefficient to the ceiling; the temperature of the water pond may be considered as 

uniform (due to convective currents), and the slab temperature varies along its thickness; 

in the slab upper surface the convective coefficient to the water also varies; during the 

night, with clear sky conditions, the effective sky temperature (for radiation exchanges) 

may be obtained with Tsky = 0.0552 Tamb
1.5, with temperatures in K; 

• Winter: indoor space at a constant temperature of 20ºC, with a variable heat transfer 

coefficient to the ceiling; consider the variation of the water pond temperature and the 

slab temperature along their thicknesses; the effective sky temperature (for radiation 

exchanges during the day) may be obtained with Tsky = Tamb - 6. 

Use a numerical model and EES to obtain the variation of the slab temperature and water 

temperature, during one Summer day (24 hours) and one Winter day (24 hours), with the 

4
.6

 –
 D

y
n
a
m

ic
 h

e
a
t 
tr

a
n
s
fe

r 
in

 a
 r

o
o
f 
s
o

la
r 

p
o
n
d
 

 



                  Heat Transfer: numerical modelling with EES applications 

85 

climatic data in the following tables. Use a time step Δ𝑡=300 s, and consider that the cover is 

used between 6:00 and 20:00 in Summer, and between 17:00 and 8:00 in Winter. Analyse the 

cover schedule effect. Assume that, when used, the cover is a perfect thermal insulator. 

Calculate also the energy transferred with the indoor space during the two 24-hour periods.  

 

SUMMER - hour 1 2 3 4 5 6 7 8 9 10 11 12 

Tamb (ºC) 17.6 17.2 17.2 16.6 16.0 15.4 15.2 17.2 19.6 22.2 23.6 25.4 

𝐼𝑠𝑜𝑙 (W/m2) 0 0 0 0 0 39 206 408 594 747 861 897 

 

SUMMER - hour 13 14 15 16 17 18 19 20 21 22 23 24/ 0 

Tamb (ºC) 27.0 29.0 31.6 32.0 33.2 33.0 30.8 27.0 24.8 24.0 22.0 18.0 

𝐼𝑠𝑜𝑙  (W/m2) 889 831 725 569 367 169 150 58 0 0 0 0 

 

WINTER - hour 1 2 3 4 5 6 7 8 9 10 11 12 

Tamb (ºC) 8.4 8.2 8.2 7.8 7.0 6.2 5.2 7.1 10.0 11.2 12.8 12.6 

𝐼𝑠𝑜𝑙 (W/m2) 0 0 0 0 0 25 142 417 450 711 664 606 

 

WINTER - hour 13 14 15 16 17 18 19 20 21 22 23 24/ 0 

Tamb (ºC) 14.0 14.8 15.6 16.4 17.2 16.2 12.6 11.6 11.0 11.0 10.6 8.4 

𝐼𝑠𝑜𝑙  (W/m2) 522 214 356 286 58 0 0 0 0 0 0 0 

 

 

Two different numerical models will be considered, due to the different climatic data, the 

different operating strategies, and the different thermal behaviour of the pond water in the 2 

seasons (Summer and Winter). 

In Summer, the slab will be warmer than the water, with the water receiving heat from the slab 

below it, which creates upward convective currents that tend to uniformize the water 

temperature. Therefore, a global model will be used for the water pond. 

In Winter, the pond water will be warmer that the slab, and therefore no upward currents will 

occur; the water will be still, as the warmer elements will be on the top and the colder elements 

on the bottom. Thus, a distributed model, similar to the slab one, will be used in the water, 

taking into account its thermal storage capacity, and heat conduction, from the top to the bottom.  

The 2 models, and respective results, will be presented separately, starting with the model for 

Summer operation.  

4.6.1 Summer operation 

The model will lead to the calculation of slab temperatures and water temperature, over time. 

Five volumes will be considered in the slab, together with a global water temperature. Figure 

4.6.2 represents the temperatures and heat transfer rates. 

 

 

 

 

 

 

Figure 4.6.2 – Temperatures and heat transfer rates in the roof solar pond – Summer operation. 

4
.6

 –
 D

y
n
a
m

ic
 h

e
a
t 
tr

a
n
s
fe

r 
in

 a
 r

o
o
f 
s
o

la
r 

p
o
n
d
 

 



Chapter 4 – Distributed and combined modelling examples  

86 

The discretised equation for the water global model, using the implicit formulation, is: 

𝑀𝑤𝑐𝑝,𝑤
𝑇𝑤

𝑡+∆𝑡−𝑇𝑤
𝑡

Δ𝑡
= ℎ𝑤

𝑡+∆𝑡(𝑇5
𝑡+∆𝑡 − 𝑇𝑤

𝑡+∆𝑡) 𝐴 − [(𝑄̇𝑐𝑜𝑛𝑣,𝑎𝑚𝑏
𝑡+∆𝑡 + 𝑄̇𝑟𝑎𝑑,𝑠𝑘𝑦

𝑡+∆𝑡 )]
+

            (4.6.1) 

where 

 𝑄̇𝑐𝑜𝑛𝑣,𝑎𝑚𝑏
𝑡+∆𝑡 = ℎ𝑒𝑥𝑡 (𝑇𝑤

𝑡+∆𝑡 − 𝑇𝑎𝑚𝑏
𝑡+∆𝑡) 𝐴                           (4.6.2) 

𝑄̇𝑟𝑎𝑑,𝑠𝑘𝑦
𝑡+∆𝑡 = 𝜀𝑤 𝜎 (𝑇𝑤

𝑡+∆𝑡4
− 𝑇𝑠𝑘𝑦

𝑡+∆𝑡4
)  𝐴                         (4.6.3) 

To implement the model equations in EES, the cover condition ([ ]+) will be defined with a 

FUNCTION or PROCEDURE, using a multiplying factor 𝑓𝑐𝑜𝑣𝑒𝑟 that is either 0 (cover on) or 1 

(cover off). 

Note that in equation (4.6.1) no water evaporation was considered, due to the plastic water 

container, which has no further thermal influence. 

For the slab internal volumes (𝑖 = 2 to 4) the following discretised equation applies: 

𝜌𝑠 𝑐𝑝,𝑠 ∆𝑥
(𝑇𝑖

𝑡+∆𝑡−𝑇𝑖
𝑡)

∆𝑡
=

𝑘𝑠

∆𝑥𝑠
(𝑇𝑖−1

𝑡+∆𝑡 + 𝑇𝑖+1
𝑡+∆𝑡 − 2𝑇𝑖

𝑡+∆𝑡)               (4.6.4) 

while for the volume in contact with water:  

𝜌𝑠 𝑐𝑝,𝑠
∆𝑥

2

(𝑇5
𝑡+∆𝑡−𝑇5

𝑡)

∆𝑡
=

𝑘𝑠

∆𝑥𝑠
(𝑇4

𝑡+∆𝑡 − 𝑇5
𝑡+∆𝑡) − ℎ𝑤

𝑡+∆𝑡(𝑇5
𝑡+∆𝑡 − 𝑇𝑤

𝑡+∆𝑡)              (4.6.5) 

The volume in contact with the indoor space will receive heat by convection (from the indoor 

air), but because the ceiling surface will have a significantly lower temperature than the other 

indoor surfaces, the thermal radiation effect will be considered. A detailed model would need 

to consider the temperatures of the different indoor surfaces, and respective view factors, but 

we will simply assume that all the surfaces except the ceiling will have the same temperature 

as the indoor air, in this case 24ºC. Then, we may use a simple equation to include the thermal 

radiation effect, and have 

𝜌𝑠 𝑐𝑝,𝑠
∆𝑥

2

(𝑇1
𝑡+∆𝑡−𝑇1

𝑡)

∆𝑡
=

𝑘𝑠

∆𝑥𝑠
(𝑇2

𝑡+∆𝑡 − 𝑇1
𝑡+∆𝑡) + ℎ𝑖𝑛𝑡

𝑡+∆𝑡(𝑇𝑖𝑛𝑡 − 𝑇1
𝑡+∆𝑡) +

                                                                                                             + 𝜀𝑠 𝜎 (𝑇𝑖𝑛𝑡
4 − 𝑇1

𝑡+∆𝑡4
)           (4.6.6) 

Equations (4.6.1) to (4.6.6) allow calculating the 6 unknown temperatures in each time step. 

The convective heat transfer coefficients will be calculated in every step with the EES heat 

transfer database, as a function of the temperature differences (free convection). The heat rate 

removed from the space (𝑄̇𝑖𝑛𝑡) is equal to the sum of the convective and radiative terms in 

equation (4.6.6), multiplied by the ceiling area.  

Figure 4.6.3 shows the Equations Window for the Summer model. The values of the climatic 

variables were defined in a Lookup Table (“Lookup 1”) and interpolated to obtain the relevant 

values, step after step. The Parametric Table (“Table 1”) – see Figure 4.6.4 – starts with row/run 

number 1, with initial temperatures that were obtained after a few daily cycles, assuming the 

same day is repeated over and over. The 𝑓𝑐𝑜𝑣𝑒𝑟 factor was defined in Procedure COVER and 

the convective coefficients for horizontal surfaces were obtained with fc_plate_horizontal1, 
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from the EES heat transfer database, which is valid for an horizontal surface hotter than the 

above fluid (case of ℎ𝑤), or an horizontal surface colder than the fluid below (ℎ𝑖𝑛𝑡).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.3 – Equations Window for the roof solar pond example – Summer operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.4 – Parametric Table initial rows for the roof solar pond example – Summer operation. 
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Figure 4.6.5 represents the evolution of temperatures and heat removal rate during the Summer 

day. Note that the slab is always warmer than the water, in particular 𝑇5 > 𝑇𝑤, which means 

that the water pond removes indoor heat during the whole 24-hour period. The ceiling (𝑇1) has 

a very stable temperature, with a maximum of 21.4ºC and a minimum of 20.8ºC. The heat 

removal rate varies from 389 to 490 W, with a maximum value at about 10:30.  

 

 

 

 

 

 

 

 

 

 

Figure 4.6.5 – Evolution of water and slab temperatures and removed heat – Summer operation. 

Figure 4.6.6 shows the evolution of the variable heat transfer coefficients. The water convection 

coefficient has a larger variation (87 to 127 W/m2K), and the indoor coefficient is very stable; 

its value includes the convective and radiative contributions, with the radiative coefficient 

representing about twice the convective one.  

 

  

 

 

 

 

 

 

 

 

 

Figure 4.6.6 – Evolution of water and indoor heat transfer coefficients – Summer operation. 

As can be seen in Figure 4.6.5, the water warms up during the daytime and is cooled at night, 

reducing its temperature by about 2.5ºC between 23:00 and 6:00. This reduction is mostly due 

to the radiative cooling effect, which is a consequence of the low sky temperatures under clear 

sky conditions. Figure 4.6.7 compares the ambient air and sky temperatures, under those 

conditions. 
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Figure 4.6.7 – Comparison of ambient air and sky temperatures with clear conditions – Summer operation. 

Discontinuities in the water temperature evolution occur when the cover is removed and placed 

(at 6:00 and 20:00). It is noticeable from Figure 4.6.5 that after removing the cover at 20:00, 

the water still continues to heat up, due to the high outdoor air temperatures. During the period 

from 20:00 to 24:00 it would be better to keep the water covered, not increasing so much its 

temperature and improving the overall thermal performance (heat removal). This can be seen 

in Figure 4.6.8, which represents the evolutions when the cover is kept between 6:00 and 24:00. 

Those results were obatined by changing the cover schedule in the COVER Procedure of Figure 

4.6.3. The minimum water temperature is now 16.8ºC, and the maximum 18.4ºC. The heat 

removal rate varies now from 440 to 522 W, which represents a significant increase by just 

adjusting the cover schedule. The cover could also be placed only after 6:00, as up to 7:00 the 

ambient and sky temperatures are still falling; but after 7:00 they will start to rise, and also solar 

radiation will start to affect the water temperature.  

 

 

 

 

  

 

 

 

 

 

Figure 4.6.8 – Evolution of water and slab temperatures and removed heat with modified cover schedule – Summer 

operation. 
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4.6.2 Winter operation 

The Winter operation model is based on the schematic discretisation of Figure 4.6.9. Besides 

the 5 nodes along the slab thickness (∆𝑥𝑠 = 3.75 cm), the water will also be divided with 5 

equally spaced nodes (∆𝑥𝑤 = 5 cm). As heat is conducted in the downward direction, no 

convection currents will occur in the water; it will therefore be treated as a solid material. The 

interface between slab and water corresponds to slab node 5 and water node 1; Figure 4.6.9(b) 

shows the interface volume that includes 2 different materials. 

 

 

 

  

 

 

 

     a             b 

Figure 4.6.9 – Discretisation of the roof solar pond system – Winter operation: (a) temperatures and heat transfer 

rates; (b) interface (slab/water) volume. 

The equations for slab nodes 𝑇1 (4.6.6) and 𝑇2 to 𝑇4 (4.6.4) remain valid. For the interface 

volume (𝑇5 = 𝑇𝑤1) we may write 

(𝜌𝑠𝑐𝑝,𝑠
∆𝑥𝑠

2
+ 𝜌𝑤𝑐𝑝,𝑤

∆𝑥𝑤

2
)

(𝑇5
𝑡+∆𝑡−𝑇5

𝑡)

∆𝑡
=

𝑘𝑠

∆𝑥𝑠
(𝑇4

𝑡+∆𝑡 − 𝑇5
𝑡+∆𝑡) +

𝑘𝑤

∆𝑥𝑤
(𝑇𝑤,2

𝑡+∆𝑡 − 𝑇5
𝑡+∆𝑡) 

                                   (4.6.7) 

For water internal nodes (𝑖 = 2 to 4): 

𝜌𝑤 𝑐𝑝,𝑤 ∆𝑥𝑤
(𝑇𝑤,𝑖

𝑡+∆𝑡−𝑇𝑤,𝑖
𝑡 )

∆𝑡
=

𝑘𝑤

∆𝑥𝑤
(𝑇𝑤,𝑖−1

𝑡+∆𝑡 + 𝑇𝑤,𝑖+1
𝑡+∆𝑡 − 2𝑇𝑤,𝑖

𝑡+∆𝑡)               (4.6.8) 

and for the upper node (𝑇𝑤,5): 

𝜌𝑤𝑐𝑝,𝑤
∆𝑥𝑤

2

𝑇𝑤,5
𝑡+∆𝑡−𝑇𝑤,5

𝑡

Δ𝑡
=

𝑘𝑤

∆𝑥𝑤
(𝑇𝑤,4

𝑡+∆𝑡 − 𝑇𝑤,5
𝑡+∆𝑡) +

                                       + 𝑓𝑐𝑜𝑣𝑒𝑟 [𝛼𝑤𝐼𝑠𝑜𝑙 − ℎ𝑒𝑥𝑡 (𝑇𝑤,5
𝑡+∆𝑡 − 𝑇𝑎𝑚𝑏

𝑡+∆𝑡) − 𝜀𝑤 𝜎 (𝑇𝑤,5
𝑡+∆𝑡4

− 𝑇𝑠𝑘𝑦
𝑡+∆𝑡4

)]   (4.6.9) 

where 𝑓𝑐𝑜𝑣𝑒𝑟 will be equal to 0 when the cover is on (nighttime) and to 1 when the cover is off 

(daytime). 

It is a set of 9 equations, plus those that define ℎ𝑖𝑛𝑡
𝑡+∆𝑡 as a function of (𝑇1

𝑡+∆𝑡− 𝑇𝑖𝑛𝑡), and the 

climatic variables (𝐼𝑠𝑜𝑙, 𝑇𝑎𝑚𝑏, 𝑇𝑠𝑘𝑦). 

Figure 4.6.10 shows the Equations Window for the Winter model. The hourly values of the 

climatic variables for the Winter day were defined in the “Lookup 1” Table, to be interpolated 

and obtain the relevant values, step after step. As before, the Parametric Table (“Table 1”) starts 

with row/run number 1, with initial temperatures that were obtained after a few daily cycles, 

assuming the same day is repeated over and over. The 𝑓𝑐𝑜𝑣𝑒𝑟 factor was defined in the Procedure 

COVER, so that the pond is covered at night and receives solar radiation during the daytime. 

The convective coefficient for indoor air (ℎ𝑖𝑛𝑡) was obtained with fc_plate_horizontal2, from 
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the EES heat transfer database, as now the horizontal surface (ceiling) is hotter than the fluid 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.10 – Equations Window for the roof solar pond example – Winter operation. 

Figure 4.6.11 represents the ambient air and sky temperatures, and incident horizontal solar 

radiation, during the Winter day. 

 

 

 

 

 

 

 

Figure 4.6.11 – Ambient air and sky temperatures, and incident solar radiation – Winter operation. 
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Figure 4.6.12 represents the evolution of temperatures and heat input rate during the Winter 

day. Note that the slab and lower water volumes have very stable temperatures, with the ceiling 

temperature (𝑇1) varying between 21.6 and 21.7ºC. As a consequence, the heat input rate (𝑄̇𝑖𝑛𝑡) 

varies only between 176 and 181 W. The indoor heat transfer coefficient is mostly due to 

radiation, as free convection is not significant with a warmer ceiling, with a total of about 5 

W/m2K. 

 

 

 

 

 

 

 

 

Figure 4.6.12 – Evolution of water and slab temperatures and input heat – Winter operation. 

There is a large temperature swing in the top water volume during the daytime, due to the 

absorption of solar radiation. The minimum top water temperature is equal to 24.2ºC, and the 

maximum (at 12:30) is 30.3ºC. Because of the water being still and its low thermal conductivity, 

it is difficult to conduct heat to the other water layers and slab; this means that a large part of 

the solar gains are lost again to the outside. It would be better to increase the heat transfer to 

the lower depths of water, by agitating it. If a water mixing or stirring device was used, then the 

water temperature would (ideally) be uniform. To assess this effect, the model was adapted, 

becoming similar to the Summer one (global water temperature). The differences lay on the 

climatic data, the cover schedule, and the use of the function fc_plate_horizontal2, instead of 

fc_plate_horizontal1, for the water free convection coefficient between the water and the slab, 

due to the water being warmer than the slab; of course, the stirring would increase the 

coefficient, compared to pure free convection, so this is a conservative value. Figure 4.6.13 

shows the new simulation results.  

 

 

 

 

 

 

 

 

 

Figure 4.6.13 – Evolution of mixed water and slab temperatures and input heat – Winter operation. 

4
.6

 –
 D

y
n
a
m

ic
 h

e
a
t 

tr
a

n
s
fe

r 
in

 a
 r

o
o
f 
s
o

la
r 

p
o
n
d
 

 



                  Heat Transfer: numerical modelling with EES applications 

93 

As Figure 4.6.13 shows, more solar gains are now transmitted by conduction to the slab, and 

the different slab volumes have larger temperature swings, with higher temperatures. The 

indoor heat input would now be much larger, varying between 315 (at 11:00) and 376 W (at 

17:00). Therefore, even a slight agitation of the water (if not ideal) will be beneficial to increase 

the heating performance of the roof solar pond.  

Figure 4.6.14 represents the water free convection coefficient and the total (radiation and 

convection) indoor heat transfer coefficient. They are much lower than the Summer operation 

values, due to the different heat flow direction. The water coefficient is more stable than in 

Summer, around 20 W/m2K, increasing during the daytime when the temperature difference is 

higher.  The indoor coefficient is almost constant, at 5.5 W/m2K, and most of it due to radiation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.14 – Evolution of mixed water and indoor heat transfer coefficients – Winter operation. 

 

4.7 Heat transfer in a laminar flow in a tube  

 

 

 

Consider a laminar flow of water in a 25 mm diameter tube, with a length of 10 m. The velocity 

profile at the tube inlet is developed, with a velocity at the axis of 6.5 cm/s. The inlet 

temperature is equal to 80ºC (for all values of 𝑟). 

The tube wall looses heat to the outside air at 20ºC, with an outside heat transfer coefficient of 

20 W/m2K. Using EES with an appropriate grid, neglecting viscous dissipation and conduction 

in the wall (negligible thickness), obtain the flow temperature distribution and the evolution of 

the convection heat transfer coefficient along 𝑥 (calculated after obtaining the fluid temperature 

𝑇(𝑟, 𝑥). 
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      Figure 4.7.1 – Laminar flow in a tube. 



Chapter 4 – Distributed and combined modelling examples  

94 

 

Figure 4.7.2 resumes the problem conditions. The flow is laminar: as the average velocity is 

equal to 𝑣𝑚𝑎𝑥/2, the Reynolds number is 𝑅𝑒=2225. 

 

 

 

 

 

Figure 4.7.2 – Conditions for the laminar water flow in a tube, with fully developed velocity profile. 

To obtain the flow temperature distribution we need to discretise the domain. For that, we will 

assume a 2D temperature distribution; as the circumferential conditions (around the tube section 

perimeter) can be considered constant, the temperature will vary along the radius (𝑟) and flow 

length (𝑥). We will then consider several volume elements with a ring shape, with a radial 

dimension equal to ∆𝑟 and a length equal to ∆𝑥. Figure 4.7.3 represents a general control 

volume element, as well as the energy exchanges related to it. 

 

 

 

 

 

Figure 4.7.3 – General control volume element with radial and axial temperature variation and energy exchanges. 

The flow section area for this elementary volume (identified with indices 𝑖, 𝑗) is: 

𝛥𝑆𝑖 = 𝜋 ((𝑟𝑖 + 𝛥𝑟/2)2 − (𝑟𝑖 − 𝛥𝑟/2)2)                                   (4.7.1) 

and its energy balance, neglecting viscous dissipation, states that the change in energy 

transported by the flow leaving the volume is a result of the conductive heat exchanges with 

the surrounding volumes: 

𝜌𝑐𝑝𝑣𝑥(𝑟𝑖) ∆𝑆𝑖(𝑇𝑖,𝑗 − 𝑇𝑖,𝑗−1) =
𝑘

∆𝑟
2𝜋 (𝑟𝑖 −

∆𝑟

2
) ∆𝑧(𝑇𝑖−1,𝑗 − 𝑇𝑖,𝑗) +

                                      +
𝑘

∆𝑟
2𝜋 (𝑟𝑖 +

∆𝑟

2
) ∆𝑧(𝑇𝑖+1,𝑗 − 𝑇𝑖,𝑗) +

𝑘∆𝑆𝑖

∆𝑧
(𝑇𝑖,𝑗−1 + 𝑇𝑖,𝑗+1 − 2𝑇𝑖,𝑗)     (4.7.2) 

Note that when expressing the transported energy in and out of the control volume (𝑖, 𝑗), the 

flow temperatures at the borders are considered as the upstream values – see Figure 4.7.4. 

 

 

 

Figure 4.7.4 – General control volume (𝑖, 𝑗) and upstream temperatures at flow inlet and outlet. 
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Assuming a total of 𝑁𝑟 nodes/volumes along 𝑟 and 𝑁𝑥 along 𝑥, equation (4.7.2), together with 

the expression for the parabolic velocity profile, are valid for nodes 𝑖 = 2 to 𝑁𝑟 − 1 and 𝑗 =
2 to 𝑁𝑥 − 1. For nodes (𝑖, 1) – tube entrance – the temperatures are known (80ºC).  

The remaining nodes are those at the axis – (1, 𝑗 = 2 to 𝑁𝑥 − 1) – those at the wall (𝑁𝑟 , 𝑗 =
2 to 𝑁𝑥 − 1) – and those at the exit section (𝑗 = 𝑁𝑥). The volumes at the axis are small cylinders 

with a radius 𝛥𝑟/2 – see Figure 4.7.5(a). The volumes at the wall have a radial length of 𝛥𝑟/2 

and, as the node is located at the wall, the flow velocity in and out of the volume is zero; the 

volumes also transfer heat to the outside (at 20ºC) – see Figure 4.7.5(b).  The exit volumes    

(𝑖 = 1 to 𝑁𝑟 , 𝑁𝑥) – see Figure 4.7.5(c) – are the only ones with a length of 𝛥𝑥/2, as the (𝑖, 1) 

entrance volumes are not used, because of the fixed inlet temperature; we have to distinguish 

the (𝑖 = 2 to 𝑁𝑟 − 1, 𝑁𝑥) volumes and the 2 limits – (1, 𝑁𝑥) and (𝑁𝑟 , 𝑁𝑥).  

 

 

 

 

                a                                           b                                                                c 

Figure 4.7.5 – Boundary volumes: (a) at the axis; (b) at the wall; (c) at the tube exit. 

At the exit volumes – see Figure 4.7.5(c) – the transport or convective energy term will use the 

upstream temperature at the inlet (𝑇𝑖,𝑁𝑥−1), and the node temperature (𝑇𝑖,𝑁𝑥
) at the exit; and 

because there are no nodes after (𝑖, 𝑁𝑥), the conduction term at the exit section will be neglected 

– this has a negligible effect in the energy balance, as the axial conduction has much less 

importance (smaller gradients) than radial conduction. 

The 𝑁𝑟 × 𝑁𝑥 equations (including the fixed inlet temperature) can be written in EES with 

double index/array variables, as seen before. The grid size is more decisive in the radial 

direction, because of the higher temperature gradients at the wall. Results will be presented for 

a 21 × 41 grid, with a constant 𝛥𝑟 = 0.625 mm and 𝛥𝑥 = 250 mm. This grid has similar 

results to a 41 × 81, or even larger grids, as 𝛥𝑟 is already considerably small. Results for 

smaller grids will later be compared. 

Figure 4.7.6 presents the Formatted Equations Window, and Figure 4.7.7 the Equations 

Window. Other array variables are the 𝑟[𝑖] and 𝑥[𝑗] coordinates, the wall surface temperature 

(𝑇𝑠[𝑗]), the mixed mean or average temperature in the section (𝑇𝑎𝑣𝑒[𝑗]) and the local convection 

coefficient (ℎ𝑐𝑜𝑛𝑣[𝑗]). The convection coefficient is calculated after the wall and flow section 

average temperatures, as the heat flux at the wall divided by the temperature difference; and, as 

the heat flux at the wall is equal to the heat flux transferred to the outside: 

 ℎ𝑐𝑜𝑛𝑣[𝑗] =
𝑞̇𝑤𝑎𝑙𝑙

(𝑇𝑎𝑣𝑒[𝑗]−𝑇𝑠[𝑗])
=

ℎ𝑒𝑥𝑡(𝑇𝑠[𝑗]−𝑇𝑒𝑥𝑡)

(𝑇𝑎𝑣𝑒[𝑗]−𝑇𝑠[𝑗])
                         (4.7.3) 

The section average temperature, or mixed mean temperature, is calculated from the available 

section temperatures: 

𝑇𝑎𝑣𝑒[𝑗] =
∑ 𝑇𝑖,𝑗

𝑁𝑟
𝑖=1

(𝑣𝐴)𝑖

∑ (𝑣𝐴)𝑖
𝑁𝑟
𝑖=1

                                       (4.7.4) 

where 𝐴𝑖 is the 𝑖 element of section area – same as 𝛥𝑆𝑖 in equation (4.7.1). 
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At the end of the 2 windows, two EES procedures (pipeflow and pipeflowlocal) from the heat 

transfer database are called, to compare the calculated convective coefficients with the 

theoretical available values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7.6 – Formatted Equations Window for the heat transfer in a laminar flow example. 
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Figure 4.7.7 – Equations Window for the heat transfer in a laminar flow example. 

After performing the calculations (Calculate → Solve) all the main results, namelly 

temperatures and convection coefficients, will be available in the Arrays Table. With 21 × 41 

nodes, the table will contain 21 rows and 41 columns just for the fluid temperatures; there will 

be 41 rows for variables such as 𝑇𝑠[𝑗] and ℎ𝑐𝑜𝑛𝑣[𝑗]. Figure 4.7.8 shows a partial view of the 

Arrays Table.  

From this table several graphical outputs may be obtained. Figure 4.7.9 shows the temperature 

distribution in 3 different flow sections (𝑥 coordinates). As can be seen, the water reduces its 

temperature along the flow direction, as it looses heat to the outside, and a large part of the 

sections has a small temperature variation; the variation is larger in the region near the wall. 

Figure 4.7.10 shows a Color Bands graph representing the 2D variation of 𝑇(𝑥, 𝑟). 

Figure 4.7.11 represents the change of the section average temperature, of the wall surface 

temperature, and of the convection coefficient along the flow length. Figure 4.7.12 shows the 

evolution of the calculated convection coefficient compared to existing theoretical models 

obtained with the EES procedure: constant wall temperature or constant wall heat flux. Our 

example has variable 𝑇𝑠 and variable 𝑞̇𝑠, with ℎ𝑐𝑜𝑛𝑣 values standing between those 2 cases. 
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Figure 4.7.8 – Arrays Table for the heat transfer in a laminar flow example. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7.9 – Temperature distribution in 3 flow sections for the heat transfer in a laminar flow example. 
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Figure 4.7.10 – Temperature distribution in the heat transfer laminar flow example – colour bands. 

 

 

 

 

 

 

 

 

Figure 4.7.11 – Evolution of average temperature, wall surface temperature and convection coefficient along the 

flow length. 

 

 

 

 

 

 

 

 

 

Figure 4.7.12 – Comparison of the calculated convection coefficient with available theoretical solutions. 

4
.7

 –
 H

e
a

t 
tr

a
n
s
fe

r 
in

 a
 l
a
m

in
a
r 

fl
o
w

 i
n

 a
 t

u
b
e
 

 



Chapter 4 – Distributed and combined modelling examples  

100 

As said before, the previous results were obtained with a uniform 21 × 41 grid, with              

𝛥𝑟 = 0.625 mm and 𝛥𝑥 = 250 mm. A larger number of nodes leads to negligible differences. 

A smaller number of nodes was also tested. The number of radial nodes is more important, and 

Figure 4.7.13 shows additional results for a 11 × 41 grid and a 6 × 41 grid.  There is a more 

noticeable difference only for the 6 radial nodes grid (with 𝛥𝑟 = 2.5 mm). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7.13 – Comparison of the calculated wall surface temperatures and local convection coefficients for 

different grid sizes. 

 

4.8 Heat transfer in a laminar flow over a flat plate  

 

 

 

 

 

Consider a flow of air over a flat plate, with a velocity 𝑣∞= 5 m/s (parallel to the surface). The 

air is at 30ºC (𝑇∞) and the plate at a constant temperature of 60ºC (𝑇𝑝). The plate length is equal 

to 1.5 m. 

With EES, using a grid of 31 x 31 nodes/elements, with a maximum distance to the plate (along 

y) of 3 cm, calculate the flow velocity components (𝑣𝑥 and 𝑣𝑦) and the flow temperature 

distribution (𝑇(𝑥, 𝑦)). After the temperature field calculate the variation of the convection 

coefficient along x.  

 

 

While in the previous example the flow was dynamically developed, and the velocity profile 

was known, in this case the dynamic and thermal boundary layers are under development. 
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      Figure 4.8.1 – Laminar flow over a flat plate. 
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We will assume a 2D geometry, with the velocities (𝑣𝑥 and 𝑣𝑦) and temperature varying along 

the flow direction, 𝑥, and 𝑦. The index 𝑖 will be associated with 𝑦, varying between 1 and 𝑁𝑦, 

and the index 𝑗 will be associated with 𝑥, varying between 1 and 𝑁𝑥. 

For the entrance nodes (𝑖, 1) the velocities and temperatures are known: 𝑣𝑥(𝑖, 1) = 𝑣∞, 

𝑣𝑦(𝑖, 1) = 0, 𝑇(𝑖, 1) = 30ºC). For the other volumes, with dimensions ∆𝑥 and ∆𝑦, we need 3 

equations to calculate the 3 unknown properties (the 2 velocity components and temperature). 

We may use the well-known continuity, momentum and energy differential equations, and apply 

a finite differences discretisation, or perform mass, momentum and energy balances for the 

chosen control volumes (finite volumes approach).  

 

 

 

 

  

 

Figure 4.8.2 – General control volume (𝑖, 𝑗) and mass balance with upstream velocities at volume borders (inlets 

and outlets). 

Using Figure 4.8.2 as a reference, for the steady-state incompressible flow, the mass balance is 

[𝑣𝑥(𝑖, 𝑗) − 𝑣𝑥(𝑖, 𝑗 − 1)] ∆𝑦 + [𝑣𝑦(𝑖, 𝑗) − 𝑣𝑦(𝑖 − 1, 𝑗)] ∆𝑥 = 0                   (4.8.1) 

which could also be obtained by discretising the continuity differential equation with upwind 

differences: 

𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
= 0   ⇒    

[𝑣𝑥(𝑖,𝑗)−𝑣𝑥(𝑖,𝑗−1)]

∆𝑥
+

[𝑣𝑦(𝑖,𝑗)−𝑣𝑦(𝑖−1,𝑗)]

∆𝑦
= 0                                            (4.8.2) 

Regarding momentum in the 𝑥 direction, the change in momentum is due to the only force 

acting in that direction: viscous stress. The differential equation is: 

𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
= 𝜈

𝜕2𝑣𝑥

𝜕𝑦2
                                         (4.8.3) 

which after discretisation becomes 

𝑣𝑥(𝑖, 𝑗)
[𝑣𝑥(𝑖,𝑗)−𝑣𝑥(𝑖,𝑗−1)]

∆𝑥
+ 𝑣𝑦(𝑖, 𝑗)

[𝑣𝑥(𝑖,𝑗)−𝑣𝑥(𝑖−1,𝑗)]

∆𝑦
= 𝜈

[𝑣𝑥(𝑖+1,𝑗)+𝑣𝑥(𝑖−1,𝑗)−2𝑣𝑥(𝑖,𝑗)]

Δ𝑦2
   (4.8.4) 

Regarding the conservation of energy, the change in energy transported by the flow is due to 

the exchanges of the volume with neighbour volumes, by conduction. We may write the 

discretised equation (neglecting energy dissipation due to low velocity): 

𝜌𝑐𝑝 [𝑣𝑥(𝑖, 𝑗)
[𝑇(𝑖,𝑗)−𝑇(𝑖,𝑗−1)]

∆𝑥
+ 𝑣𝑦(𝑖, 𝑗)

[𝑇(𝑖,𝑗)−𝑇(𝑖−1,𝑗)]

∆𝑦
] =

                                                        =  𝑘 [
[𝑇(𝑖,𝑗+1)+𝑇(𝑖,𝑗−1)−2𝑇(𝑖,𝑗)]

Δ𝑥2
+

[𝑇(𝑖+1,𝑗)+𝑇(𝑖−1,𝑗)−2𝑇(𝑖,𝑗)]

Δ𝑦2
]    (4.8.5) 

Then, equations (4.8.2), (4.8.4) and (4.8.5) allow the calculation of 𝑣𝑥, 𝑣𝑦 and 𝑇. 
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Besides the fixed velocity and temperature conditions at the entrance section – nodes                

(𝑖 = 1 to  𝑁𝑦, 1) – the conditions at the plate are also known: for nodes (𝑖 = 1, 𝑗 = 2 to 𝑁𝑥) 

both velocity components are equal to 0, and the temperature is the plate temperature. Far from 

the plate, outside the boundary layer – nodes (𝑖 = 𝑁𝑦, 𝑗 = 2 to 𝑁𝑥) –, the velocity is equal to 

𝑣∞ and the temperature to 𝑇∞. As the boundary layer is smaller than the maximum distance to 

the plate used (3 cm), those conditions are valid for 𝑖 = 𝑁𝑦. The conduction term at the exit 

section will be neglected by imposing the same temperature at (𝑖, 𝑁𝑥 + 1) and (𝑖, 𝑁𝑥). 

The local convection coefficient is equal to the heat flux at the wall divided by the temperature 

difference between plate and 𝑇∞. The heat flux at the wall is evaluated as the heat conduction 

rate in the fluid, between the 2 nodes nearer to the wall (neglecting longitudinal conduction): 

 ℎ𝑐𝑜𝑛𝑣[𝑗] =
𝑞̇[𝑗]

(𝑇𝑝−𝑇∞)
=

𝑘

∆𝑦
(𝑇𝑝−𝑇[2,𝑗])

(𝑇𝑝−𝑇∞)
                                       (4.8.6) 

Figure 4.8.3 presents the Equations Window, and Figure 4.8.4 the Formatted Equations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.3 – Equations Window for the laminar flow over a flat plate example. 

4
.8

 –
 H

e
a

t 
tr

a
n
s
fe

r 
in

 a
 l
a
m

in
a
r 

fl
o
w

 o
v
e
r 

a
 f

la
t 

p
la

te
 

 



                  Heat Transfer: numerical modelling with EES applications 

103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.4 – Formatted Equations Window for the laminar flow over a flat plate example. 
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Results were obtained for a 31 × 31 grid, which, with a flow length of 1.5 m and a height of 3 

cm, means ∆𝑥 = 5 cm and ∆𝑦 = 1 mm. 

When running the program a few convergence problems occurred. The initial guess values were 

changed for the temperatures – choosing 50ºC, as a value between 30 and 60ºC – and also for 

the vertical velocities, 𝑣𝑦(𝑖, 𝑗) – a value of 0.01 m/s was used. Besides, it was found that the 

term related to 𝑣𝑦(𝑖, 𝑗) in the momentum equation (4.8.4) was causing no convergence. 

Therefore, this term was eliminated, which should not produce bad results, as the velocity 

vertical component (𝑣𝑦) is very small compared to the horizontal component (𝑣𝑥). The error 

will be assessed by comparing the convective coefficient results with the theoretical solution 

for a laminar flow over a flat surface, which was added at the end of the Equations Window. 

After performing the calculations (Calculate → Solve) all the main results, namelly velocities, 

temperatures and convection coefficients, are available in the Arrays Table. From this table 

several graphical outputs may be obtained. 

Figure 4.8.5 shows the horizontal velocity (𝑣𝑥) distribution, for 4 different 𝑥 coordinates. The 

velocity gradient decreases along 𝑦, as expected, and the dynamic boundary layer thickness 

when the air leaves the plate is equal to about 1 cm. Figure 4.8.6 shows the same distribution 

for all values of  𝑥 and 𝑦, using colour bands. Figure 4.8.7 represents the vertical velocity (𝑣𝑦) 

distribution, for 4 different 𝑥 coordinates. The velocity values are much lower than the vertical 

ones, reducing in the main flow direction. The maximum value at 𝑥=0.25 m is about 0.011 m/s. 

Figures 4.8.8 and 4.8.9 show the temperature distribution in the flow. Temperature gradients 

are high near the plate wall, as expected. The thermal boundary layer is slightly thicker than the 

dynamic boundary layer: at the exit (𝑥=1.5 m) the thermal boundary layer is about 1.25 cm 

thick. This is expected from theory, as the Prandtl number for air is lower than 1 (with 𝑃𝑟=1 

the two boundary layers would have the same size). In this air flow the Reynolds number is in 

the laminar limit of 5 × 105, and the theoretical calculation indicates a dynamic boundary 

thickness of 0.0106 m at the plate exit. Since 𝑃𝑟=0.724, the theoretical thermal boundary layer 

thickness should be equal to 0.0118 m. The values obtained with the numerical model are very 

close to the theoretical predictions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.5 – Horizontal velocity distribution in the laminar flow over a flat plate, at four 𝑥 locations. 
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Figure 4.8.6 – Horizontal velocity distribution in the laminar flow over a flat plate – colour bands. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.7 – Vertical velocity distribution in the laminar flow over a flat plate, at four 𝑥 locations. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.8 – Temperature distribution in the laminar flow over a flat plate, at four 𝑥 locations. 
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Figure 4.8.9 – Temperature distribution in the laminar flow over a flat plate – colour bands. 

Following equation (4.8.6), the model was used to calculate the evolution of the convective heat 

transfer coefficient (ℎ𝑐𝑜𝑛𝑣[𝑥]). The results are presented in Figure 4.8.10, where a comparison 

is made with the theoretical values from the expression for laminar flow over a flat plate. The 

results of the numerical model are fairly close, with a slight underprediction for low values of 

𝑥 (a slight overprediction in nodes 𝑗=3 and 𝑗=4). The differences are generally lower than 5%. 

This means that the approximations made, namelly regarding the momentum equation, are 

fairly valid.  

 

 

 

 

 

 

 

 

 

Figure 4.8.10 – Comparison of the calculated convection coefficient (black colour curve) with the laminar flow 

theoretical solution (red colour dots).  
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4.9 Solar dryer heat and mass transfer  

 

 

 

 

A small solar drying system is composed of a solar collector and a drying chamber. Ambient 

air is introduced in the collector, with an area of 2 m2, and a flowrate of 15 litres/s/m2; under 

those conditions its efficiency is equal to 0.5. Climatic data during the drying period are given 

in the table below: air temperature (𝑇𝑎𝑚𝑏), humidity (𝜙𝑎𝑚𝑏) and incident solar radiation on the 

collector surface (𝐼𝑠𝑜𝑙,𝑐𝑜𝑙). 

The drying chamber contains a wet material (fully saturated surface) with an air channel with a 

height of 5 cm. It is 2 m long and 1 m wide. The flow may be assumed as parallel to the material 

surface. Heat transfer with the outside of the chamber (top, bottom and sides) is negligible. 

Assume quasi-steady conditions in the collector and drier. Considering the mixed-mean air 

properties in each flow section, dividing the dryer into volume elements, and using convection 

coefficient correlations, obtain with EES the evolution of air temperature and humidity along 

the channel, and the drying rate, during the drying period. 

 
hour 9 10 11 12 13 14 15 16 17 

𝑇𝑎𝑚𝑏  (ºC) 16.6 17.4 19.6 22.2 22.8 24.2 23.2 23.0 22.0 

𝜙𝑎𝑚𝑏  (%) 55 51 46 42 43 41 39 48 51 

𝐼𝑠𝑜𝑙,𝑐𝑜𝑙 (W/m2) 601 770 897 961 962 887 748 557 368 

 

 

The model will start by calculating the solar collector outlet conditions (temperature and 

humidity) for the existing inlet (ambient air) conditions, taking into account the collector 

efficiency. Under quasi-steady conditions, we may write: 

𝑄̇𝑐𝑜𝑙 = 𝜂𝑐𝑜𝑙𝐼𝑠𝑜𝑙,𝑐𝑜𝑙𝐴𝑐𝑜𝑙 = 𝑀̇𝑐𝑜𝑙𝑐𝑝(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 − 𝑇𝑎𝑚𝑏)                                           (4.9.1) 

As the air is heated in the collector, its relative humidity (𝜙) is reduced, although maintaining 

the same absolute humidity (𝜔). The ambient air absolute humidity (at the inlet) may be 

calculated after the ambient temperature and relative humidity. In EES, using the absolute 

humidity property function for AirH2O (“humrat”, from humidity ratio): 

𝜔𝑖𝑛 = humrat(AirH2O; 𝑇 = 𝑇𝑎𝑚𝑏; 𝑅 = 𝜙𝑎𝑚𝑏; 𝑃 = 100)                            (4.9.2) 

for air at atmospheric pressure (in kPa). This will also be the absolute humidity at the entrance 

of the dryer. 
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      Figure 4.9.1 – Schematic representation of a solar drying system. 



Chapter 4 – Distributed and combined modelling examples  

108 

From equations (4.9.1) and (4.9.2) we know, for each climatic situation, the air temperature and 

humidity at the dryer inlet. The collector volumetric flow rate is always the same (imposed by 

the fan performance), but there is a slight variation of the total mass flow rate, which includes 

dry air flow rate plus water vapour flow rate. The relationship between them is given by: 

𝑀̇𝑐𝑜𝑙 = 𝑀̇𝑑𝑟𝑦(1 + 𝜔𝑖𝑛)                                                          (4.9.3) 

The dry air flow rate will be the same along the dryer length, but the total flow rate will increase, 

due to water evaporation. 

The dryer will be divided into 𝑁 nodes and 𝑁-1 finite control volumes, according to Figure 

4.9.2. We shall use control volumes of the same size (∆𝑥), because the inlet conditions (node 

1) are already known: the inlet air properties are the absolute humidity (𝜔[1]), the temperature 

(𝑇𝑎𝑖𝑟[1]), and the air enthalpy per mass of dry air (ℎ𝑒𝑛𝑡[1]); the subscript ent was used for 

enthalpy, to distinguish from the ℎ symbol for the convective coefficient. Equations (4.9.1) and 

(4.9.2) define 𝜔[1] and 𝑇𝑎𝑖𝑟[1], and the enthalpy is easily calculated with the EES function: 

ℎ𝑒𝑛𝑡[1] = enthalpy(AirH2O; 𝑇 = 𝑇𝑎𝑖𝑟[1]; 𝑅 = 𝜙𝑎𝑚𝑏; 𝑃 = 100)                           (4.9.4) 

 

 

 

 

 

                    a                                          b 

Figure 4.9.2 – Finite control volumes in the dryer channel: (a) 𝑁-1 volumes, 𝑁 nodes; (b) generic volume. 

For each volume (Figure 4.9.2(b)) the outlet properties (𝑖 + 1) will be calculated assuming that 

the average air properties in the volume are the inlet ones (𝑖, upwind approach). They result 

from mass and energy balances, neglecting the longitudinal heat conduction; this means that 

only heat exchanges with the wet surface (at 𝑇𝑠[𝑖]) are considered. 

 The mass balance states that the change in air mass is due to evaporation from the wet surface: 

𝑀̇𝑑𝑟𝑦(𝜔[𝑖 + 1] − 𝜔[𝑖]) = 𝑀̇𝑒𝑣𝑎𝑝[𝑖] =  

= ℎ𝑚[𝑖](∆𝑥 ∙ 𝑤𝑖𝑑𝑡ℎ)[𝜌𝑣,𝑠𝑎𝑡(𝑇𝑠[𝑖]) − 𝜙𝑎𝑖𝑟[𝑖] 𝜌𝑣,𝑠𝑎𝑡(𝑇𝑎𝑖𝑟[𝑖])]              (4.9.5) 

where the vapour concentration of saturated air can be calculated with the EES property 

database as a function of temperature (𝑇𝑠[𝑖] or 𝑇𝑎𝑖𝑟[𝑖]). The mass transfer coefficient may be 

related to the heat convection coefficient with the Lewis relationship, and this coefficient may 

be obtained with the EES heat transfer procedure “Ductflow local”, which provides the local 

convection coefficients for each location (𝑥[𝑖] + ∆𝑥/2 was used). 

The energy balance at the wet surface states that the heat needed for water evaporation comes 

from air convection (longitudinal heat conduction is neglected): 

𝑀̇𝑒𝑣𝑎𝑝[𝑖] ∆ℎ𝑙𝑣 = ℎ[𝑖](∆𝑥 ∙ 𝑤𝑖𝑑𝑡ℎ)(𝑇𝑎𝑖𝑟[𝑖] − 𝑇𝑠[𝑖])                                                                 (4.9.6) 
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and the air energy balance is: 

𝑀̇𝑑𝑟𝑦(ℎ𝑒𝑛𝑡[𝑖 + 1] − ℎ𝑒𝑛𝑡[𝑖]) = 𝑀̇𝑒𝑣𝑎𝑝[𝑖] ∆ℎ𝑙𝑣 − ℎ[𝑖](∆𝑥 ∙ 𝑤𝑖𝑑𝑡ℎ)(𝑇𝑎𝑖𝑟[𝑖] − 𝑇𝑠[𝑖])     

                                                                                                                                                 (4.9.7) 

which, according to (4.9.6) implies that the air enthalpy remains constant; this wouldn’t happen 

if the dryer had heat losses to the outside. 

The enthalpy is a function of 𝜔 and 𝑇𝑎𝑖𝑟, and therefore equations (4.9.5), (4.9.6) and (4.9.7) 

allow the calculation of 𝜔[𝑖 + 1],  𝑇𝑠[𝑖] and 𝑇𝑎𝑖𝑟[𝑖 + 1]. The calculation is extended to all 

volumes, until the outlet values are obtained (𝑖 = 𝑁). 

Figure 4.9.3 presents the Formatted Equations window, and Figure 4.9.4 the Equations Window. 

The total drying rate was calculated by summing the evaporation rate in all volumes. A drying 

system indicator (𝜂𝑑𝑟𝑦) was also calculated, by dividing the heat rate needed to evaporate the 

water by the heat rate input in the solar collector. A total of 10 volumes (11 nodes) were used, 

and its effect will be assessed later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.3 – Formatted Equations window for the solar air dryer example. 
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Figure 4.9.4 – Equations Window for the solar air dryer example. 

A Parametric Table (“Table 1”) was also created, containing the time (“hour”) and respective 

climatic conditions, as well as selected calculation results – see Figure 4.9.5. To obtain those 

results, modifications had to be made in the guess values of 𝑇𝑎𝑖𝑟[𝑖] and 𝜙𝑎𝑖𝑟[𝑖], which by default 

are equal to 1; temperatures and relative humidities closer to the collector outlet conditions were 

used. Those guess values are only used in Run 1, as the guess/initial values for the other EES 

runs use the previous run results. 

 

 

 

 

 

Figure 4.9.5 – Parametric Table for the solar air dryer example. 

As an 𝑥[𝑖] coordinate was defined along the dryer length, every time EES is run the air 

properties for the different 𝑥[𝑖] values will be available in an Arrays Table. The evolutions may 

be graphically represented. Figure 4.9.6 shows the Arrays Table for the last Run in Table 1 (at 

17:00), and Figure 4.9.7 represents the evolution of air and wet surface temperatures and 

relative humidity along the dryer at 17:00. This figure shows that the wet surface temperature 

is almost constant, and equal to the air wet bulb temperature. The same Figure shows that there 

is virtually no difference in the air temperature results if 40 volumes are used instead of 10. 
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Figure 4.9.6 – Arrays Table for Run 9 of Table 1 (17:00) in the solar air dryer example. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.7 – Evolution of different temperatures and relative humidity along the dryer at 17:00. 

From the Parametric Table in Figure 4.9.5 different graphs were obtained. Figure 4.9.8 shows 

the variation in dryer inlet and outlet conditions (air temperature and relative humidity) for the 

different climatic conditions considered. The collector is responsible for a significant increase 

in air temperature (from 22.8 up to 50ºC at 13:00), with a corresponding decrease in relative 

humidity. The air reduces its temperature along the dryer, but stills leaves with a high 

temperature (45ºC at 13:00) and a low humidity; this indicates that a larger (longer) dryer could 

be used for increased system performance. 

Figure 4.9.9 shows the evaporation rate and the drying system indicator (𝜂𝑑𝑟𝑦) for the different 

climatic conditions considered. The drying rate is higher at 13:00, due to the more favourable 

conditions, especially the higher solar collector radiation. The system indicator increases to 

about 0.24 at 17:00, due to a high drying heat rate combined with a lower collector heat rate – 

see Figure 4.9.10. Note that the value of this indicator is not only due to the solar collector 

input, as part of the drying rate is due to the ambient air temperature and humidity. Figure 4.9.10 

also represents the change in collector air flow rate, change that is due to the varying humidity, 

and air density. 
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Figure 4.9.8 –Dryer inlet and outlet air conditions for the different ambient conditions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.9 – Evaporation rate and drying system indicator for the different ambient conditions. 

 

 

 

 

 

 

Figure 4.9.10 – Solar collector input and flow rate, and drying input for the different ambient conditions. 
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4.10 Dew point air cooler  

A dew point air cooler achieves an air temperature close 

to the dew point temperature, lower than the wet bulb 

temperature of incoming air. To achieve that, the 

incoming air circulates in a dry channel, transfering heat 

to a stream of humid air in a wet channel; the humid air is 

the same air leaving the dry channel, that is partially 

diverted to the wet channel, and humidified by contact 

with a water saturated material.  

Simulate the evolution of air temperature and humidity in a dry air channel with a height of 1 

cm, a width and a length of 1 m, with an average air velocity of 10 cm/s. The incoming air is at 

30ºC, with a relative humidity of 40%. There is transfer of heat to one wet channel with the 

same dimensions. 50% of the air leaving the dry channel is diverted to the wet channel. The 

thickness of the wet material is 1 mm, and its effective conductivity is equal to 0.6 W/mºC; the 

thickness of the separating wall may be neglected. 

 

 

This is another example with simultaneous heat and mass transfer. As in 4.9, we shall assume 

quasi-steady conditions in the two streams, and consider the mixed-mean air properties in each 

flow section. The two channels will be divided into volume elements, and convection 

coefficient correlations will be used for heat and mass transfer. 

The inlet air absolute humidity may be calculated after the ambient temperature and relative 

humidity. In EES, using the absolute humidity property function for AirH2O (“humrat”, from 

humidity ratio): 

𝜔𝑖𝑛 = humrat(AirH2O; 𝑇 = 𝑇𝑖𝑛; 𝑅 = 𝜙𝑖𝑛; 𝑃 = 101.3)                          (4.10.1) 

for air at atmospheric pressure (101.3 kPa). This will also be the absolute humidity at the end 

of the dry channel, and at the flow start in the wet channel. The wet bulb and dew point 

temperatures corresponding to the inlet temperature and humidity can also be calculated with 

EES functions (WeTbulb and DewPoint AirH2O functions).  

The numerical model will consider N nodes and N-1 volumes in each channel, with general 

volumes represented in Figure 4.10.2. The two streams flow in opposite directions, and to keep 

the same reference (index i in the array variables), while stream a flows with increasing i, flow 

b flows with decreasing i. In each volume the entrance properties are known; at the entrance of 

channel b (wet channel) 𝑇𝑏[𝑁] = 𝑇𝑎[𝑁] and 𝜔[𝑁] = 𝜔𝑖𝑛. In each wet channel section, only 

two properties are needed to define the humid air conditions: temperature and absolute humidity 

or temperature and relative humidity, as all the others (enthalpy as well) can be obtained from 

those 2 properties. Therefore, from an overall volume including the 2 channels, we need 

equations to obtain 4 properties: the dry channel exit air temperature (𝑇𝑎[𝑖 + 1]), the wet 

channel exit air humidity (𝜔[𝑖]), the wet channel exit air temperature (𝑇𝑏[𝑖]), and the water 

saturated surface temperature (𝑇𝑠[𝑖]).  
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      Figure 4.10.1 – Dew point air cooler. 
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Figure 4.10.2 – Finite control volumes in the two channels: a – dry channel; b – wet channel. 

The 4 equations for each volume are: the mass balance for the wet channel stream, the energy 

balance of the dry channel stream (exchange a-s), the energy balance of the wet channel stream 

(exchange b-s), and an overall energy balance (a-b). For each volume (Figure 4.10.2) the outlet 

properties (𝑖 + 1) will be calculated assuming that the average air properties in the volume are 

the inlet ones (upwind approach). Longitudinal heat conduction will be neglected. 

The mass balance for the wet channel stream states that the change in air mass is due to 

evaporation from the saturated wet surface: 

𝑀̇𝑏,𝑑𝑟𝑦(𝜔[𝑖] − 𝜔[𝑖 + 1]) = 𝑀̇𝑒𝑣𝑎𝑝[𝑖] =  

                               = ℎ𝑚(∆𝑥 ∙ 𝑤𝑖𝑑𝑡ℎ)[𝜌𝑣,𝑠𝑎𝑡(𝑇𝑠[𝑖]) − 𝜙[𝑖] 𝜌𝑣,𝑠𝑎𝑡(𝑇𝑏[𝑖 + 1])]             (4.10.2) 

where the vapour concentration of saturated air can be calculated with the EES property 

database as a function of temperature (𝑇𝑠[𝑖] or 𝑇𝑏[𝑖 + 1]). The mass transfer coefficient was 

related to the heat convection coefficient, and only the average value along the flow length was 

considered; although there is a variation, this is not very significant for the results (small 

hydraulic diameter and low Reynolds number). The average convection coefficient was 

obtained with the EES heat transfer procedure “DuctFlow”. 

The energy balance of the dry channel stream (a) expresses that the change in energy carried 

by the flow is due to the heat transfer across the separating wall and wet material. Other heat 

losses to the outside of the channel are neglected. We may write: 

𝑀̇𝑎𝑐𝑝,𝑎(𝑇𝑎[𝑖] − 𝑇𝑎[𝑖 + 1]) = 𝑈 (∆𝑥 ∙ 𝑤𝑖𝑑𝑡ℎ) (𝑇𝑎[𝑖] − 𝑇𝑠[𝑖])                                   (4.10.3) 

where 𝑈 is the overall heat transfer coefficient from the air up to the wet surface in contact with 

stream b; it includes the convection in stream a, and the conduction through the wall and wet 

material. The average convection coefficient for stream a was also calculated with “DuctFlow”. 

Note that although the a and b flow rates are different, the convection coefficients are very 

similar, because both flow regimes are laminar.  

The energy balance of the wet channel stream, also assuming no losses to the outside, includes 

convection from the humid air (b) to the saturated surface (s), and the transfer of latent heat 

from the surface to the air; the difference between both is due to the heat coming across the 

separating wall. The corresponding equation is: 
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𝑀̇𝑏,𝑑𝑟𝑦(ℎ𝑒𝑛𝑡[𝑖] − ℎ𝑒𝑛𝑡[𝑖 + 1]) = 𝑀̇𝑒𝑣𝑎𝑝[𝑖] ∆ℎ𝑙𝑣 − ℎ𝑏(∆𝑥 ∙ 𝑤𝑖𝑑𝑡ℎ)(𝑇𝑎[𝑖 + 1] − 𝑇𝑠[𝑖])     

                                                                                                                                               (4.10.4) 

An overall energy balance will state that the total energy received by the wet stream (b) comes 

from the dry stream (a). That is: 

𝑀̇𝑏,𝑑𝑟𝑦(ℎ𝑒𝑛𝑡[𝑖] − ℎ𝑒𝑛𝑡[𝑖 + 1]) = 𝑀̇𝑎𝑐𝑝,𝑎(𝑇𝑎[𝑖] − 𝑇𝑎[𝑖 + 1])             (4.10.5)  

Equations (4.10.2) to (4.10.5) allow the calculation of the 4 unknown variables. However, after 

implementation in EES, it was found that convergence was almost impossible. Because the 

energy balance at the saturated surface – equation (4.10.4) – involves very small numbers, 

associated with the evaporation rate, and at the same time very large numbers, associated with 

the enthalpies, this leads to numerical instabilities and convergence problems. To avoid this, a 

different form of the energy balance equation was used, using the combined heat and mass 

methodology followed by ASHRAE, [8]. With this approach, equation (4.10.4) can be re-

written as 

𝑀̇𝑏,𝑑𝑟𝑦(ℎ𝑒𝑛𝑡[𝑖] − ℎ𝑒𝑛𝑡[𝑖 + 1]) = 𝑘𝑚(∆𝑥 ∙ 𝑤𝑖𝑑𝑡ℎ)(ℎ𝑒𝑛𝑡,𝑠[𝑖] − ℎ𝑒𝑛𝑡[𝑖 + 1])        (4.10.6) 

where 𝑘𝑚 is a mass transfer coefficient, related to ℎ𝑚 through 

𝑘𝑚 = ℎ𝑚𝜌𝑑𝑟𝑦 𝑎𝑖𝑟 =
ℎ

𝑐𝑝,𝑏
                                                                    (4.10.7) 

and ℎ𝑒𝑛𝑡,𝑠 is the enthalpy of vapour at the wet surface:  

ℎ𝑒𝑛𝑡,𝑠[𝑖] = enthalpy(AirH2O; 𝑇 = 𝑇𝑠[𝑖]; 𝑅 = 1; 𝑃 = 101.3)                                 (4.10.8) 

Using the same methodology, equation (4.10.2) could have been replaced by 

𝑀̇𝑏,𝑑𝑟𝑦(𝜔[𝑖] − 𝜔[𝑖 + 1]) = 𝑘𝑚(∆𝑥 ∙ 𝑤𝑖𝑑𝑡ℎ)(𝜔𝑠[𝑖] − 𝜔[𝑖 + 1])                           (4.10.9) 

With equation (4.10.6) no convergence problems occurred, and it was not even necessary to 

change the default guess values for any variables, starting with all unknown variables equal to 

1. 

Figure 4.10.3 shows the Formatted Equations window, and Figure 4.10.4 the Equations 

Window. Note that the default energy units (kJ) were changed to J, to avoid the constant 

multiplication of enthalpies by 1000.  

Two performance indicators were also calculated: the wet bulb efficiency (𝜂𝑤𝑏), quantifying 

the approach to the inlet air wet bulb temperature, and the dew point efficiency (𝜂𝑑𝑝), 

quantifying the approach to the inlet dew point temperature; they are defined as 

𝜂𝑤𝑏 =
𝑇𝑎[1]−𝑇𝑎[𝑁]

𝑇𝑎[1]−𝑇𝑤𝑏[1]
                                                                  (4.10.10) 

and 

𝜂𝑑𝑝 =
𝑇𝑎[1]−𝑇𝑎[𝑁]

𝑇𝑎[1]−𝑇𝑑𝑝[1]
                                                                  (4.10.11) 

 

The exit temperature (𝑇𝑎[𝑁]) will be lower than the wet bulb temperature, approaching the dew 

point temperature, and therefore the wet bulb efficiency will be higher than 1. 
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Figure 4.10.3 – Formatted Equations window for the dew point cooler example. 
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Figure 4.10.4 –Equations Window for the dew point cooler example. 

Figure 4.10.5 shows the results for 101 nodes (100 volumes) in each channel. Air in the dry 

channel reaches a temperature well below wet bulb. The dew point efficiency is close to 1. The 

wet channel air is almost saturated, during the flow length. Figure 4.10.6 shows the effect of 

reducing the number of nodes to 41. In this example, it is more advisable to use the higher 

number of nodes; a further increase produces similar results to 101. 
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Figure 4.10.5 – Evolution of stream (a and b) temperatures, wet surface temperature and relative humidity (wet 

channel). Comparison with inlet air wet bulb temperature. 

 

 

 

 

 

 

 

 

 

 

Figure 4.10.6 – Evolution of stream temperatures, wet surface temperature and relative humidity (wet channel) for 

two different node numbers (41 and 101). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10.7 – Psychrometric chart representation of air stream evolutions in the 2 channels: a – dry channel; b – 

wet channel. 
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Figure 4.10.7 shows another type of graph that may be obtained with EES: a psychrometric 

graph, representing the air temperature and absolute humidity (𝜔) of the air, along the 2 

channels. The dry stream (a) is cooled at constant absolute humidity (no mass transfer), from 

30ºC down to 15.8ºC, and the wet stream (b) evolves always close to the saturation line, leaving 

at 24.1ºC. 

Note that the use of a higher inlet air flow rate may compromise the objective of reaching a 

lower than wet bulb temperature. To assess that, further results were obtained with an inlet 

velocity of 0.4 m/s (4 times higher). The results are shown in Figures 4.10.8 and 4.10.9. With 

the higher flow rates (maintaining 50% in the wet channel), the outlet temperature of the dry 

channel is now 20.7ºC, higher than the wet bulb temperature. The wet bulb efficiency is now 

only equal to 0.93. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10.8 – Model results for an inlet velocity of 0.4 m/s (dry channel). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10.9 –Model results for an inlet velocity of 0.4 m/s (dry channel). 
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4.11 Domestic hot water solar system with thermal storage stratification   

 

 

 

 

Consider the domestic hot water solar system of example 3.5, in its last configuration, with a 

separate auxiliary tank, electrically heated with proportional control. We want to assess the 

effect of thermal stratification in the storage tank, using different volumes in the vertical 

direction. The auxiliary tank can still be considered at uniform temperature. 

Additional data are: 

▪ storage tank diameter: 0.5 m; 

▪ storage tank height: 1.528 m; 

▪ storage tank heat loss coefficient: 𝑈=0.645 W/m2ºC (𝑈𝐴=1.8 W/ºC). 

 

 

The model of the stratified storage tank is based on its division into finite volumes, and 10 

volumes of equal size will be considered. With a total tank height of 1.528 m, this means that 

each volume will have a height (∆𝐻) of 15.28 cm. The temperature is considered uniform in 

each volume and the water flows between elements when the pumps are activated (collector 

circuit or consumption circuit). Figure 4.11.2 shows the water circulation inside the tank, 

assuming vertical velocity only, under 2 different situations: collector flow rate is higher, or 

consumption flow rate is higher. 

Under the specified consumption flow rates, when the collector pump operates the collector 

flow rate is always higher (0.08 kg/s) and there is a downward flow. When the collector pump 

is switched-off, if there is water consumption there will be an upward flow, and if no 

consumption occurs there will be no flow inside the tank. 

 

 

 

 

 

 

 

 

        a                                                          b 

Figure 4.11.2 – Storage tank finite volumes and flow rates: (a) collector flow rate higher than consumption flow 

rate; (b) consumption flow rate higher than collector flow rate. 
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      Figure 4.11.1 – Schematic representation of a DHW solar system. 
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Figure 4.11.3 shows the mass and energy flows in different tank volumes, assuming that all 

entrances/exits are located in the extreme volumes (top - 1 - or bottom - N). Besides the energy 

transported by the flows, each volume will exchange heat by conduction with the neighbour 

volumes, and will loose heat through the tank wall to the outside (ext).  

 

 

 

 

 

                      a                                                b                                                c 

Figure 4.11.3 – Transported energy in finite volumes: (a) top volume (𝑖 = 1); (b) internal volume (𝑖); (c) bottom 

volume (𝑖 = 𝑁). Two different situations are represented: higher collector flow rate, or higher 

consumption rate. 

The two different situations represented in Figure 4.11.3 – higher collector flow rate (with 0 or 

positive water consumption) and higher consumption rate (with no collector flow in this case) 

may be written, for each of the 3 volume types, with the help of a pump factor, as already 

defined in example 3.5 (𝑓𝑝𝑢𝑚𝑝). This factor is equal to 0 when the pump is switched off, and to 

1 when the pump is switched on (when the collector outlet temperature is higher than the inlet 

one). With the help of this factor the discretised equation for the top volume, using the implicit 

method, is: 

𝜌𝛥𝐻𝐴𝑠 𝑐𝑝

𝑇1
𝑡+∆𝑡 − 𝑇1

𝑡

𝛥𝑡
= 𝑀̇𝑐𝑜𝑙

𝑡+∆𝑡𝑐𝑝𝑇𝑐𝑜𝑙,𝑜𝑢𝑡
𝑡+∆𝑡 − 𝑀̇𝑐𝑜𝑛𝑠

𝑡+∆𝑡𝑐𝑝𝑇1
𝑡+∆𝑡 + 

 +(𝑀̇𝑐𝑜𝑛𝑠
𝑡+∆𝑡 − 𝑓𝑝𝑢𝑚𝑝𝑀̇𝑐𝑜𝑙

𝑡+∆𝑡) 𝑐𝑝[𝑓𝑝𝑢𝑚𝑝𝑇1
𝑡+∆𝑡 + (1 − 𝑓𝑝𝑢𝑚𝑝)𝑇2

𝑡+∆𝑡] + 

 +
𝑘𝑤 

𝛥𝐻
𝐴𝑠 (𝑇2

𝑡+∆𝑡 − 𝑇1
𝑡+∆𝑡) − 𝑈(𝜋𝐷𝛥𝐻 + 𝐴𝑡𝑜𝑝 )(𝑇1

𝑡+∆𝑡 − 𝑇𝑒𝑥𝑡)      (4.11.1) 

For an internal volume (𝑖 = 2 to 𝑁 − 1) it is: 

𝜌𝛥𝐻𝐴𝑠 𝑐𝑝

𝑇𝑖
𝑡+∆𝑡 − 𝑇𝑖

𝑡

𝛥𝑡
= 

 = (𝑀̇𝑐𝑜𝑛𝑠
𝑡+∆𝑡 − 𝑓𝑝𝑢𝑚𝑝𝑀̇𝑐𝑜𝑙

𝑡+∆𝑡) 𝑐𝑝[𝑓𝑝𝑢𝑚𝑝(𝑇𝑖
𝑡+∆𝑡 − 𝑇𝑖−1

𝑡+∆𝑡) + (1 − 𝑓𝑝𝑢𝑚𝑝)(𝑇𝑖+1
𝑡+∆𝑡 − 𝑇𝑖

𝑡+∆𝑡)] − 

                       −
𝑘𝑤 

𝛥𝐻
𝐴𝑠 (𝑇𝑖−1

𝑡+∆𝑡 + 𝑇𝑖+1
𝑡+∆𝑡 − 2𝑇𝑖

𝑡+∆𝑡) − 𝑈 𝜋𝐷 𝛥𝐻(𝑇𝑖
𝑡+∆𝑡 − 𝑇𝑒𝑥𝑡)       (4.11.2) 

and for the bottom volume: 

𝜌𝛥𝐻𝐴𝑠 𝑐𝑝

𝑇𝑁
𝑡+∆𝑡 − 𝑇𝑁

𝑡

𝛥𝑡
= 𝑀̇𝑐𝑜𝑛𝑠

𝑡+∆𝑡𝑐𝑝𝑇𝑚𝑎𝑖𝑛𝑠 − 𝑀̇𝑐𝑜𝑙
𝑡+∆𝑡𝑐𝑝𝑇𝑁

𝑡+∆𝑡 − 

 −(𝑀̇𝑐𝑜𝑛𝑠
𝑡+∆𝑡 − 𝑓𝑝𝑢𝑚𝑝𝑀̇𝑐𝑜𝑙

𝑡+∆𝑡) 𝑐𝑝[𝑓𝑝𝑢𝑚𝑝𝑇𝑁−1
𝑡+∆𝑡 + (1 − 𝑓𝑝𝑢𝑚𝑝)𝑇𝑁

𝑡+∆𝑡] + 

 +
𝑘𝑤 

𝛥𝐻
𝐴𝑠 (𝑇𝑁−1

𝑡+∆𝑡 − 𝑇𝑁
𝑡+∆𝑡) − 𝑈(𝜋𝐷𝛥𝐻 + 𝐴𝑏𝑜𝑡 )(𝑇𝑁

𝑡+∆𝑡 − 𝑇𝑒𝑥𝑡)      (4.11.3) 

The additional equation needed is the collector energy balance: 

0.8 𝐼𝑠𝑜𝑙
𝑡+∆𝑡𝐴𝑐𝑜𝑙 − 5(𝑇𝑁

𝑡+∆𝑡 − 𝑇𝑎𝑚𝑏
𝑡+∆𝑡)𝐴𝑐𝑜𝑙 = 𝑀̇𝑐𝑜𝑙

𝑡+∆𝑡𝑐𝑝(𝑇𝑐𝑜𝑙,𝑜𝑢𝑡
𝑡+∆𝑡 − 𝑇𝑁

𝑡+∆𝑡)                          (4.11.4) 
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Equations (4.11.1) to (4.11.4) allow the calculation of the 𝑁 storage tank temperatures (10 in 

our case) and the collector outlet temperature. 

The auxiliary tank is translated in the model in the same manner as in example 3.5, taking into 

account that the inlet water temperature is equal to the top storage tank temperature (𝑇1): 

𝑇𝑎𝑢𝑥
𝑡+∆𝑡−𝑇𝑎𝑢𝑥

𝑡

Δ𝑡
=

1

𝑀𝑎𝑢𝑥𝑐𝑝
[𝑃𝑟𝑒𝑠𝑖𝑠𝑡

𝑡+∆𝑡 + 𝑀̇𝑐𝑜𝑛𝑠
𝑡+∆𝑡𝑐𝑝(𝑇1

𝑡+∆𝑡 − 𝑇𝑎𝑢𝑥
𝑡+∆𝑡) −

                                                                                                    −(𝑈𝐴)𝑡𝑎𝑛𝑘(𝑇𝑎𝑢𝑥
𝑡+∆𝑡 − 𝑇𝑒𝑥𝑡)]              (4.11.5) 

with the resistance input (𝑃𝑟𝑒𝑠𝑖𝑠𝑡) depending on the control function. 

Figure 4.11.4 shows the EES Equations Window containing the model equations. The PUMP 

and RESIST functions are the same as those used in example 3.5. There was, however, the need 

to obtain the 𝑓𝑝𝑢𝑚𝑝 factor using the inlet and outlet collector temperatures at the previous time 

(𝑡) and not 𝑡 + ∆𝑡; this was necessary to achieve convergence in the 𝑓𝑝𝑢𝑚𝑝 calculation. This 

represents an explicit method influence in the otherwise implicit method of discretisation. 

However, no significant errors occur, as the time steps are small (60 s). 

Figure 4.11.5 shows the corresponding formatted equations window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11.4 – EES Equations Window for the DHW solar system example. 
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Figure 4.11.5 – EES Formatted Equations window for the DHW solar system example. 

4
.1

1
 –

 D
H

W
 s

o
la

r 
s
y
s
te

m
 w

it
h
 t

h
e
rm

a
l 
s
to

ra
g
e

 s
tr

a
ti
fi
c
a
ti
o
n
 

 



Chapter 4 – Distributed and combined modelling examples  

124 

The resistance electrical consumption and the solar collector contribution are also calculated, 

as done in example 3.5. For the energy gained in the solar collectors: 

Energysol = Energysol,old + 𝑓𝑝𝑢𝑚𝑝 ∗ 𝑀̇𝑐𝑜𝑙 ∗ 𝑐𝑝 ∗ (𝑇𝑐𝑜𝑙,𝑜𝑢𝑡 − 𝑇10) ∗ Δ𝑡                         (4.11.6) 

Figure 4.11.6 shows the storage tank temperature evolution in different volumes, as well as the 

auxiliary tank temperature. Temperatures in the storage tank have a large spatial variation, 

which exceeds 20ºC during the nighttime. During sunshine hours there is circulation in the 

collectors and in the storage tank, with much closer temperature values (due to water mixing). 

Figure 4.11.7 compares the collector inlet (same as storage tank bottom) and outlet temperature 

evolution. The temperature at the top of the storage tank is always very close to the collector 

outlet temperature.  

The consumption temperature (auxiliary tank temperature) is very stable, with values between 

53 and 55ºC; thermal stratification leads to a higher temperature at the storage top, increasing 

the auxiliary tank inlet temperature and decreasing its energy consumption. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11.6 – Temperatures in the storage tank and auxiliary tank for the DHW solar system example. 
 
 

 

 

 

 

 

 

 

 

 

Figure 4.11.7 – Collector inlet and outlet temperatures for the DHW solar system example. 
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Besides the collector inlet and outlet temperature evolution, Figure 4.11.8 represents the pump 

factor. It is equal to 1 (there is collector circulation) during most of the sunshine hours. In the 

early morning period, between 8:45 and 9:30, the pump switches on and off several times, due 

to low solar radiation and very close inlet and outlet temperatures. This could be avoided by 

imposing circulation (pump switching on) with a larger temperature difference (outlet-inlet). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11.8 – Collector inlet and outlet temperatures and pump factor for the DHW solar system example. 

Figure 4.11.9 shows the electrical resistance consumption. Due to the higher auxiliary tank inlet 

temperature the electrical consumption is smaller, and due to the lower inlet collector 

temperature, collector efficiency is higher, as well as solar contribution to water heating. 

Without thermal stratification the total water heat input was equal to 10.307 kWh and the solar 

contribution was equal to 67%; with thermal stratification the total water heat input is equal to 

10.365 kWh and the solar contribution is equal to 73%. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11.9 – Energy and water consumption for the DHW solar system example. 
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