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“Remember that all models are wrong,
but some are useful.”

G.E.P. Box

“The purpose of computing is insight, not numbers.”

R. Hamming






Forward

Most heat transfer problems are complex, in the sense that in most cases there are no analytical
(exact) solutions to obtain temperature fields or heat transfer rates/coefficients. Thermal energy
systems, and in general energy systems, involve heat transfer processes and, therefore, also
require approximate solutions.

The approximate solution to non-linear systems of algebraic equations or differential equations
is typically obtained with numerical methods, which became increasingly popular with the
advent of affordable and fast computing. Second generation computer programs, such as
Engineering Equation Solver (EES), do not even require conventional computer programming
to solve mathematical problems, being based on the use of internal algorithms.

The simulation of heat transfer processes and thermal energy systems widely benefits from such
tools, allowing fast approximate solutions, and also the study of alternative processes/systems
through the use of parametric analyses. This book is dedicated to the numerical simulation of
thermal energy systems, with the use of the EES software tool.

However, prior to the use of software tools, problem analysis is fundamental, in order to decide
which type of model and degree of accuracy is acceptable. In this book, several heat transfer
and thermal system problems are presented, coming from the energy engineering practice. After
problem analysis and discussion, a numerical model is applied and solutions are obtained with
the use of EES. Computed results are discussed, always trying to assess the effect of model
assumptions on the results, and obtain conclusions which might be useful for the design of those
systems.

The book starts by revisiting some well-known numerical methods to solve equations that
appear on most practical cases (chapter 1). Global and distributed models are distinguished. In
the case of distributed models, the finite volumes approach is favoured. A brief presentation of
the EES software follows (chapter 2); however, this book does not replace the software manual,
and it is advisable that the reader has some prior experience of EES. Chapters 3 and 4 present
several examples of thermal system modelling, with chapter 3 dedicated to global modelling
and chapter 4 to distributed modelling.

Porto, May 2024

Armando C. F. C. Oliveira
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List of Symbols

Symbols are the simplified image of known physical quantities and are fundamental to write
equations. In this text a set of symbols similar to those found in heat transfer literature was
adopted. Relatively to most English language literature there are however a few differences:
the main one is related to the heat flux and heat transfer rate, with the use of ¢ and Q,
respectively, and where the dot represents heat per unit time (thermal power).

Roman letters

Symbol Designation Unit
A Area m?
cp Specific heat at constant pressure J/(kgK) or J/(kg°C)
D Diameter m
or Mass diffusion coefficient m?/s
F Function -
f Function .
or Friction factor -
g Gravity acceleration m/s?
g Heat rate source per unit volume W/m?3
H Height m
h;h Convection coefficient or heat transfer coefficient ~W/(m?K) or W/(m?°C)
or Enthalpy; J/kg
Average coefficient over a given area/surface W/(m?K) or W/(m?°C)
I Incident radiation W/m?
K Local pressure loss coefficient -
k Thermal conductivity W/(mK) or W/(m°C)
L Length m
or reference dimension
M Mass kg
M Mass flow rate kg/s
m Mass flow rate per unit area kg/s/m?
Nu; Nu Nusselt number; Nu average value -
P Power W
p Pressure N/m? or Pa
Pr Prandtl number -
Q Heat J
0 Heat transfer rate W
q Heat flux (heat transfer rate per unit area) W/m?
R Thermal resistance K/W or °C/W
T Radial space coordinate m
or Radius
Ra Rayleigh number -



Re Reynolds number -
S Section area m?
s Arc length m
or Spacing
T; T Temperature; AverageTemperature Kor°C
t Time S
U Overall heat transfer coefficient W/(m?2K) or W/(m?°C)
|4 Volume m3
v Velocity m/s
v Average Velocity m/s
w Width m
wf Weighting factor -
x Space coordinate m
or Independent variable in a function depending on associated variable
y Space coordinate m
or Dependent variable in a function depending on associated variable
z Space coordinate m
Greek letters
Symbol Designation Unit
a Thermal diffusivity m?/s
or Absorption coefficient -
B Thermal expansion coefficient KtoroCt
A Variation depending on associated variable
1) Boundary layer thickness m
€ Error depending on associated variable
or Heat exchange efficiency -or%
n Efficiency -or%
0 Angle, or Circumferential space coordinate rad
u Dynamic viscosity kg/(s m)
v Kinematic viscosity m?/s
p Specific mass kg/m3
or Reflexion coefficient -
o Stefan-Boltzmann constant W/(m2K*#)
T Transmission coefficient -
¢ Angle, or Circumferential space coordinate; rad
Relative humidity -or%
v Physical property depending on specific property
W Absolute humidity kgwater/KQadry air




Subscripts® / Superscripts

Script Designation
abs relative to absorption of radiation
amb ambient
b base
c characteristic, or corrected
cond conductive
conv convective
em relative to emission of radiation
evap evaporation
ext external
h hydraulic
i initial
or iteration number
or node number associated to space coordinate
in inlet
inc relative to incident radiation
int internal
j node number associated to space coordinate
l liquid
m mass
n normal (to a surface)
out outlet
rad radiative
s section
sat saturation
sf solid-fluid interface
sol relative to solar radiation
sur surface
t (superscript) attime t
t + At (superscript) attime t + At
tot total
trans relative to radiation transmission
v vapour
X x coordinate/direction
y y coordinate/direction
o far from surface (solid wall)

* these are general subscripts;

in several practical examples more specific ones are used (not listed here)






Heat Transfer: numerical modelling with EES applications

1 Numerical methods

This chapter revisits some well-known numerical methods to solve equations that appear on
thermal engineering practical cases. It starts with methods to solve non-linear equations. After
distinguishing global and distributed models, some numerical integration methods are
presented, applicable to steady-state and dynamic cases. For distributed models, the finite
volumes method is favoured.

1.1  Solution of non-linear equations

The solution of a non-linear algebraic equation generally requires an iterative procedure. Two
of the most used methods are the simple-iteration and the Newton-Raphson methods. The
corresponding methods for non-linear equation sets are also presented.

1.1.1 Simple-iteration and Newton-Raphson methods

The simple-iteration method requires the equation to obtain the unknown value (x) in the form:

x = f(x) (11)

The iterative process is started with an initial or guess value (x,); then a better solution is
obtained with

x1 = f(xo) (1.2)

and the process is continued for more iterations:

Xiy1 = f(x) (1.3)

where i denotes the iteration number. The process is continued in the expectation that after some
iterations the difference between x; ., and x; is very small. If this happens the process is stopped
and x;,, is considered to be the solution with an error smaller than |x;,,; — x;|. However, in
some cases the convergence to a solution does not happen. This depends both on the function
(f) and on the initial guess (x;).

Consider the two functions in Figure 1.1. In Figure 1.1(a) the function f(x) has increasing y
values — positive derivative —and in Figure 1.1(b) decreasing y values — negative derivative. In
both cases the process is converging to a solution (x,,;). In the case of Figure 1.1(b) the iteration
results are alternately located to the left and to the right of the solution, but always approaching
(in module) the solution.

However, not all cases are successful. For the cases in Figure 1.2 no convergence is obtained,
due to the function high derivative values (steep curves).

1



Chapter 1 — Numerical methods

y=x
y=fx) = f(9)

Xso1 X2 Xp Xy X X7 Xeo1 X2 Xy X

a b
Figure 1.1 — Graphical representation of the simple-iteration method to obtain the solution of x = f(X):
(a) function with positive derivative (increasing y); (b) function with negative derivative
(decreasing y).

y y=fx) - y _
y=x y=x
y=fx
|
sol X0 X1 X3 X X7 Xy X, X
Xsol
a b

Figure 1.2 — Graphical representation of the simple-iteration method to obtain the solution of x = f(x):
() function with positive derivative (increasing y); (b) function with negative derivative
(decreasing y).

In fact, it is a sufficient condition of convergence that

If'Ge)l <1 (1.4)
which means that low derivative values will lead to convergence. However, even with high
values convergence may occur (the condition in equation (1.4) is not a necessary condition).

Another method to solve non-linear equations is the Newton-Raphson method. It is also an
iterative method, with the equation to solve written in the form:

F(x)=0 (1.5)

Starting with an initial guess value, the value for the next iteration is obtained from the previous
iteration one and the function derivative (F'). The relationship between 2 consecutive iteration
values may be obtained through

Fx) -

F'(xi) =X — X1 (16)

which is graphically represented in Figure 1.3 — the tangent to F at x; is used.
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y=Fx

a Xsol b

1] 1
‘ Xirr X; X

Figure 1.3 — Graphical representation of the iterative process in the Newton-Raphson method.

The same relationship of equation (1.6) may be obtained using the Taylor series expansion
(with only the first order derivative):

a ’
F(xiy1) =2 F(x) + % . (Xip1 — %) = F(x) + F'(x) - Ocipr — x3) (1.7)
and imposing that F (x;,,) becomes 0.

Although this method gives no guarantee of convergence, it is usually more efficient than the
simple-iteration method, converging in more cases and with less iterations. But it requires the
calculation of the derivative (F') in each iteration. Its success also depends on the initial guess
value and function F.

1.1.2 Equation sets: Gauss-Seidel and Newton Raphson methods

Most energy/thermal systems have several components, and their numerical models involve
several equations with several unknowns (independent variables — x4, x,, ..., x;,). Generally, the
equations are not linear. Therefore, the solution of a set of non-linear algebraic equations is
required. Two methods are described, which correspond to the methods seen in 1.1.1, extended
to more than one variable/equation.

The Gauss-Seidel method is an extension to equation sets of the simple-iteration method for
single equations. The equation set is represented as

X1 = fl(xl,xZ, ...,xn)

xZ = fZ(xlr-XZI ---1xn) (18)
<
kxn = fn(xll X2, ey xn)
and the successive iterations are defined by
s

x2i+1 = fz(xli, xzi, ey xnl-) (19)

 Xniey = fa(X1p Xapr o Xn)
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In each iteration the new values of the x,, variables are calculated independently, that is, the
solution of independent non-linear single equations is repeated for the n equations. As in the
simple-iteration method, the process is repeated until convergence of the values of all n
variables.

The Newton-Raphson method for non-linear equation sets is also an extension of the method
for non-linear single equations (keeping the same name). The equations are written as

r
Fl(xl, X, ...,Xn) =0

Fy(xq, X9, ey Xp) =0 (1.10)

L E,(xq, x5, ., Xp) =0
and the first order Taylor series expansion for each function is

(x11+1 x1;) +

(x4 — x2)+ + (xnl+1 Xn;) (1.11)

F(x1i+1; . xniﬂ) = F(xli,xzi, . xnl) +

+_

axz

Using the expansion for all equations and imposing that F(x,,,,, .., x,,,,) becomes zero, the
following set of equations is found

oF,

a
r".-_Fl('xli’‘xzi’ ""xni) = a_xl i ) (x1i+1 - xli) Tt % i ) (xni+1 - xni)

< —Fz(xll.,le., ...,xni) =25 - (xli+1 — xli) + -+ STFi i : (xnl.+1 - xni) (1.12)

axl i

d a
—Fn(xll.,le., ...,xni) = a_z i : (x1i+1 — xli) + - +£ i : (xnl.+1 - xni)

which allows the calculation of the x;,, n values, since all previous iteration n values (x;) are
known; F; and F; values may also be found with x; values.

Therefore, the unknowns in the (1.12) equation set are the changes in the x; values from
iteration i to iteration i+1. The set can be solved as a linear set of equations, using standard
methods such as the Gauss elimination method. In each iteration a different linear set has to be
solved. The iterative process is stopped after convergence of all n variable values (x;). As with
single equations, this method is more efficient than the Gauss-Seidel method.

1.2 Numerical integration in global models

Besides algebraic equations, thermal energy models often contain differential equations. The
type of differential equation encountered depends on the nature of the model: global or
distributed. A global model is classified as one where properties of a system component are
constant along its extension; this means that they do not change throughout a space coordinate.
It is the case of a solid with a uniform temperature, or a tank filled with a fluid at uniform
temperature. In a distributed model properties change along space coordinates.
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In global modelling, if all components are in steady-state no time changes occur. Then, the
equations that translate system operation are algebraic equations, and the model can be solved
using the methods seen in section 1.1.2. But if time changes occur, there is a dynamic or
unsteady situation, and to translate that, differential equations appear. Those equations express
the change of a property as a function of time. The type of equation to solve in dynamic global
modelling is

dy _
& f&y) (1.13)

where y is the property considered (dependent variable) and t (time) the independent variable.
In many cases there is no possible analytical solution to equation (1.13), due to the nature of
the function f. More than one property may be involved, and a set of differential equations needs
to be solved.

For the (1.13) ordinary differential equation to be solved, numerical integration methods are
presented in the next sections (1.2.1 to 1.2.4). They all transform the differential equation into
an algebraic equation that may be solved with the methods seen in section 1.1.

1.2.1 Euler explicit method

The Euler explicit method allows the calculation of the value of y at different independent
variable values (t). Those discrete time values are separated by At — the integration step.
Starting with an initial value (y*), the next is obtained with:

d
yort =yt ae- f(6y0) =yt + AL (114)

Figure 1.4 illustrates the method. F(t) is the exact solution of the differential equation. The
derivative in the previous instant (t) is used to estimate the following value of the property
(yt+2Y). There is an error (¢) related to the difference to the exact solution F (t + At); however,
in the general case the exact solution is not known. Note that the smaller the At, the smaller the
error. Also note that the error is cumulative: it increases step after step.

y
y=F(x)
t+HAL
y &
yf
t t+At t
l&—>1
At

Figure 1.4 — Graphical representation of the Euler explicit method.

With this method, the calculation in each time step involves assessing only one derivative value.
Due to this, it is classified as a first order integration method.

This method is not always stable, and depending on the F function may lead to unrealistic
results. This also depends on the time step used (At), and it is advisable to use low values.
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1.2.2 Euler implicit method

The Euler implicit method estimates the following value of the property (y*4%) using the
derivative in the next instant of time, through

yEHAE = Yt At f(t + AL YT =yt 4 Ae- 2 (1.15)
dtle+at

The process is represented in Figure 1.5. The segment used to estimate the next property value
has the same slope as the derivative in the next point. The equation to obtain y**4¢ is implicit,
and depending on the form of the derivative function (f) may require an iterative process to
obtain the solution; the methods seen in section 1.1.1 may be used.

y
y=F(x)
yt+At /! &
t
t t+At t
—>l
At

Figure 1.5 — Graphical representation of the Euler implicit method.

The Euler implicit method is also a first order integration method. Comparing Figures 1.4 and
1.5, one may conclude that both methods lead to an error with the same order of magnitude
(module value). However, the implicit method is always stable, independently of the time step
used.

1.2.3 Crank-Nicolson semi-implicit method

The Crank-Nicolson semi-implicit method is applicable when the derivative function (f) is only
a function of y (and not explicitly t). Then

t+At

t
yt+At — yt + At-f(y +32’ ) (1.16)

An example is the case of a body at uniform temperature under a cooling process: the change
in temperature (derivative over time) is only a function of temperature and not time.

y
yr+At , y=Fe
yt +yt+At
-
vy

t t+ At t

Figure 1.6 — Graphical representation of the Crank-Nicolson method.
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Compared to the previous two methods, this one leads to lower errors (&). Although it is only a
first order integration method (one evaluation of f in each time step), it has a precision similar
to second order integration methods. This semi-implicit method is always stable, independently
of the time step used, and may require an iterative procedure in each time step.

1.2.4 Other methods

There are several other numerical integration methos for equation (1.13). Among them, the
Euler modified method (second order), the Euler improved method (second order), or the
Runge-Kutta method (fourth order). Of course, the calculation work and the precision increase
with the increase in order.

However, due to the typical application of numerical integration methods to computing, the
complexity of higher order methods is frequently replaced by simpler methods using a smaller
integration step: more steps are needed, but with less calculations in each step and similar
quality results.

1.3  Numerical integration in distributed models

In a distributed model, properties change along space coordinates. The spatial change of a given
property depends on the physical process. But in transport phenomena, which occur in thermal
engineering, the typical equations result from mass, momentum or energy balances for an
infinitesimal volume. Those equations involve first and second order partial derivatives, where
the independent variables are space coordinates, and also time in dynamic situations. We shall
start by looking at steady-state cases.

1.3.1 Distributed steady-state modelling (1D, 2D, 3D)

In the case of a property (W) varying along one space coordinate (x), the typical differential
equation to solve has the following form

Y = f W) (L17)

We can take as an example the 1D heat conduction equation:
CT _ fx,T) 1.18
dxz - x’ ( . )

which in the simplest case (1D, no internal heat sources, constant thermal conductivity) may be

reduced to d2T/dx? = 0, with a very simple analytical solution.

As a 2D example, the heat conduction equation in 2D cartesian coordinates, without sources
and with constant conductivity, is

92T = 92T
a2tz 0 (1.19)

while the energy equation for a steady-state laminar flow in 2D may be simplified to

9%T = 0°T
— —) (1.20)

aT T
Plp (”xa+ UJ’E) - k(axz t )2

There are different methods to transform those differential equations into sets of algebraic ones,
that may then be solved with the methods seen in section 1.1.2.
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These methods are named: finite differences, finite volumes, and finite elements.

The finite differences method replaces the first and second order derivatives by differences. If
in a 1D situation, with variation of the W property along x, we consider the 3 points separated
by Ax in Figure 1.7:

1 2 3 vo—y p Y +1A2d2q1

—& © © X 1T Ty 2% dx
_—) 2 2

| | Ax L I

| Ax | X 3 =W, + xEZ+E x -

2

Figure 1.7 — Variation of the W property along x and Taylor series expansion.

and using the expansion in Taylor series up to the second order term, and adding and subtracting
the 2 equations in Figure 1.7, we will obtain for the first and second order derivatives in the
mid-point (point 2):

dv| _ W3-

dx |, 24x (1.21)
and

d?¥| _ Pi+¥3-29,

dx2l, Ax? (1.22)

By dividing the spatial domain in discrete points (nodes), and replacing the first order and
second order derivatives with expressions like (1.21) and (1.22), the differential equation to be
solved will be replaced by a set of algebraic equations (one for each node), and its solution will
lead to the values of the property W in all nodes. In 2D and 3D cases, similar expressions to
(1.21) and (1.22) are used to replace 0¥ /0y, 0¥/dz, 0?w/dy? and 3?w/dz2. In 2D each node
will be identified by 2 numbers/subscripts (one for each coordinate) and in 3D by 3 numbers.

The finite volumes method, sometimes also known as control volume method, uses a physics
approach instead of a mathematical one. As in the finite differences method, the definition of
the shape of the volume elements to use depends on the system geometry. For instance, in 2D
cartesian coordinates (plates) rectangular volumes are used, while in cylindrical coordinates
circular sectors are used. Figure 1.8 represents the 2D volume elements used in the above cases.
Each volume is located around a generic point in the material (P). This point is surrounded by
another 4 points/volume elements in 2D (by 6 in 3D).

i-1,j+1 |4, j+1 i+1, j+1

njL m[

0,i b
Figure 1.8 — VVolume elements in the finite volumes method: (a) rectangular; (b) circular.

8
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In the finite volumes method a balance of the property W in the volume is made. For example,
in the case of 2D heat conduction in a material (¥ = T) there will be heat fluxes across the 4
volume borders; under steady-state the total balance of all fluxes multiplied by the respective
areas will have to be zero. Considering that internal heat generation (g) may occur, the equation
for the general volume (i, j) in Figure 1.8(a), with constant thermal conductivity and constant
Ax and Ay, will be

éAy(Ti—l,j — Ti,j) + ﬁAy(TH'l,j — Ti,j) + %Ax(Ti,j—l - Ti,j) +

k .

Taking into account a grid with several nodes and volume elements, there will be an equation
analogous to (1.23) for each node/volume. The resulting algebraic equation set can be solved
to calculate the temperatures in all nodes/volumes. The temperatures in intermediate points may
be estimated by interpolation. The method is more accurate for smaller Ax and Ay values, that
is, when more nodes/volumes are used. To obtain better solutions, the number of equations in
the set is sometimes very high, which points to the use of computational means. The
identification of symmetrical zones allows a reduction in the number of equations and related
computational effort, as will be discussed in examples of chapter 4.

The nodes/volumes located in the domain frontiers (borders) require special attention. As
recommended in [1], nodes should be placed at the borders, as represented in Figure 1.9(a). In
this figure case, with a convective boundary in 2 sides (possibly with different external
temperatures and heat transfer coefficients), the equation for the border volume will be

k Ay k Ax
37 Ty = o) + 555 (Tijma = Tip) +
Ay Ax . Ax Ay
+hy = (Texeq = Tij) + ha— (Textz = Tij) + g~ =0 (1.24)
1; Jij+
P
;’(Z;.\.u I,. \ f+1,j material A V )
S\ | i =% = |1 |27
1 N - A2
material B AR S
i j-1 i, j-1
1 Ax
X
a b

Figure 1.9 — Special situations in the finite volumes method: (a) boundary volume (corner); (b) volume with 2
different materials.

Another special case occurs in a boundary between 2 different materials. A single volume may
be used, with the node in the boundary, and the volume including the 2 different materials —
Figure 1.9(b). In this case the discretised equation will be
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ka Ay kp Ay ka Ay kg Ay
sy (T = Tij) + 25 (T = Tij) + 355 (Tirns = Tij) + 525 (Tirn, —

k k . A . A
=Tij) + gy Bx(Tyjen = Tyj) + 2 8x(Tyjea = Tig) + Gabx 7+ gphx 7 =0 (125)

As for the finite elements method, it relies on a set of nodes and triangular elements (in 2D),
distributed along the space domain. The boundaries are approximated by linear segments, which
makes them easier to be adapted to curved boundary surfaces — see Figure 1.10.

Figure 1.10 — 2D finite elements: (a) triangular elements and nodes; (b) nodal systems (closed frontiers).

In the case of heat conduction, in the elements of Figure 1.10(a) the temperature is supposed to
vary linearly between the 3 nodes of each element. The problem consists in calculating the
temperature in each node. Each triangular element has 3 degrees of freedom, because 3 nodal
values are needed to calculate the temperature in any point inside the triangular element.
Assuming a linear variation of the temperature in each side of the triangle, isothermal lines are
normal to those sides, and volume elements with 6 isothermal segments around each internal
node may be represented — Figure 1.10(b). An energy balance for each nodal system is
performed, expressing the heat fluxes across the borders. For more mathematical details the
reader is referred to [2].

In this book the finite volumes method will be favoured in all application examples of chapter
4. This is due to its more didactical and physics-based approach.
1.3.2 Distributed dynamic modelling

In this case the property to be assessed changes over space and time. We will consider the finite
volumes method to integrate the differential equation, replacing it by a set of algebraic
equations (discretised equations).

Besides the space coordinates, time is also an independent variable, and its first order derivate
appears in transport equations. For example, in the 2D unsteady heat conduction equation:

aT %t | 9°T
pCp Y =k (ﬁ + a_yz) (1.26)

the temperature derivative over time appears in the left-hand side due to the change in energy
contained in the volume over time.

Let us start by a simpler case: 1D unsteady heat conduction. The following equation applies:

oT 9°T
pCp5. = k— (1.27)

dx2
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| Ax | Ax
| ]
i1 P (i) i+1
k\w x
Ax

Figure 1.11 — Generic finite volume for 1D and dimensions.

Considering the finite volume in Figure 1.11 and assuming the temperature is uniform along its
length (Ax) in every instant of time, the integration of the left-hand side leads to

ft+At oT

pep i dy 5, dtdx = pc, Mx(T{H = Tf) (1.28)

The right-hand side comes from the balance of heat fluxes across the volume borders, and may
be integrated as

t+At 0°T _ t+At (k(Tip—Ty)  k(T;—=Ti_1)
Jo 7 ko dxdt = ( T EE— )dt (1.29)

To solve the time integral in (1.29) it is necessary to assume a variation of the temperatures
along time. Among other possibilities, it is assumed that, for all temperatures

ft+At

. Tdt=[wfT* + (1 —wf) T 4t (1.30)

where wf is a weighting factor which may take values from 0 to 1. With its definition the
discretised form of equation (1.27) for volume i is:

Ax A _ k(Tit+At_Tit+At) k(Tit+At_Tit_+At)
P n (T4 - 1f) = Wf( g w )Tt
t 7t t_mt
+(1 — Wf) (k(THA; ) — k(TleTL—1)> (1.31)

This equation relates the temperature of node i at t + At with its temperature at ¢ and with the
temperatures of the neighbour nodes/volumes in both instants (¢t + At and t). The choice of the
value of the weighting factor (wf) may affect the form of equation (1.31). Three typical wf
values are considered in Figure 1.12. A value wf = 0 corresponds to assuming that the
temperatures remain constant at the ¢ values during At; therefore T/ *4¢ will only depend on the
temperatures in the previous instant; equation (1.31) allows the explicit calculation of Tt T4, as
all temperatures at t are previously known.

explicit wf=0

AL
Ti ______

implicit wf=1

Figure 1.12 — Decreasing temperature time evolution according to the weighting factor value.
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A value wf = 0.5 expresses a linear variation of the temperature between t and t + At and,
similarly to the method seen in section 1.2.3, it is called Crank-Nicolson or semi-implicit
method. If wf = 1, the temperatures are assumed to immediately change to the t + At level at
t — implicit method.

Of the 3 values, Patankar [1] recommends the use of the implicit method, which allies simplicity
with stability. The explicit method, as in the case of section 1.2.1, may lead to unstable results,
requiring a relatively low time step.

With the use of the implicit formulation, equation (1.31) becomes

(tf+t-1f) L+AL | At t+At
pey Tt = S (THHE + TP — 2T ) (132)

Compare this equation with the application of the finite differences seen in equations (1.21) and
(1.22) to equation (1.27). A similar result is obtained.

When treating higher space dimensions (2D, 3D) the same principles apply. More nodes are
involved in each discretised equation — 4 nodes in 2D and 6 nodes in 3D, besides the central
node P. For example, in the 2D unsteady heat conduction equation (cartesian coordinates) with
the implicit formulation we will have:

(Tif;'r At‘Tifj) k t+At 4 At t+AL
p c,AxAy Eve—— _A)’(TL 1,j Tl+1] T ) +

+- Ax( TS + THE — 2T ™ (1.32)

The difference between this equation and equation (1.23) for the 2D steady-state (excluding the
heat source) lies on the left-hand side, which expresses the time variation.

Applications to 1D and 2D cases will be seen in chapter 4. The case of fluid flow, using the
integration of equation (1.20), will also be discussed there.

12
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2 Engineering Equation Solver (EES)

Engineering Equation Solver is used in this book as a computational tool to solve different
modelling examples presented in chapters 3 and 4. As the name states, it is basically an equation
solver tool, with an internal algorithm to solve sets of non-linear equations. This can be done
with other existing software tools, such as MATLAB. However, EES has many advantages for
thermal energy applications, due to an extensive database of fluid physical properties, and
internal calculation tools related to heat transfer and fluid flow. It also allows to take into
account changes in problem equations (conditions), through combined programming.

A very quick overview of EES is given in this chapter. It concentrates on its most important
features, taking into account the objectives of this book. For further details the reader should
use the software manual, [3], namely regarding software installation.

2.1  Writing equations in EES - equations window

The EES environment includes a main menu (Figure 2.1) and different windows are available.
The main window is called Equations Window, where all equations and main problem
conditions are defined.

| EES Academic Professional:

File Edit Search Options Calculate Tables Plots Windows Help Examples

el =3 BE v Y¥YE ™K H BE = EM| 7|8

F= Equations Window =N EcR |
-

EU [Line:1 Chari 1 Wrap: On | Insert Caps Lock Off |51 CkPaklmassdeg | Warnings: On | Unit Chic On  Complex: Off | Syntex Highligh

Figure 2.1 — EES menu and Equations Window.

The main menu includes different options (File, Edit, Search, Options, Calculate, Tables, Plots,
Windows, Help and Examples — see Figure 2.1), and some sub-options can be directly assessed
by the buttons located below.

The definition of the problem variables used in the equations, and the related calculation process
is referred in the next sub-section. The definition of physical properties and library databases
will be referred in sub-section 2.1.2.
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2.1.1 Variables and calculation process

A set of equations to solve is defined in the Equations Window. Variables are identified as any
combination of letters (capitals or smallcases without distinction) and numbers. In the example
of Figure 2.2, 3 variables were set (X1, X2 and X3) plus the definition of A=2. EES identifies
4 equations and 4 variables, as although A has its value defined, it counts as a variable in the
Equations Window. The ** or the * symbols are used as the “to the power of” symbol.

Array variables may also be used, and they are very useful to express equations such as (1.32).
They are written with square brackets around the indices (1, 2 or 3 indices), after the variable
name, such as X1[i], T[i, j] or Templi, j, k].

o [2][=

A=2

XN+ A2TI0I(IE2A
K1+27K202+ X3 1/2)=5
EX1+3" M2 (1/3)+4°X3=5

EU [Line:1 Char4 Wrap: On | Insert Caps Lock: Off |SICkPak) massdeg | Warnings: On | Unit Chic On  Complex: Off | Syntax Highlight

Figure 2.2 — Example of problem definition in the Equations Window.

A list of the variables in the Equations Window may be assessed by choosing in the menu
Options, followed by Variable Info (Options — Variable Info). This will open the window in
Figure 2.3. This window lists the 4 variables, and more information can be added in the other
columns. The Guess column contains the defined values, such as A=2, plus the initial (guess)
values used to start the iterative calculation process. By default all initial/guess values are set
as 1, but this can (an sometimes must) be changed. EES applies the Newton-Raphson method
seen in section 1.1.2, starting with the initial values. Note that the equations do not need to be
written in the form F (x4, x,, ..., x,) = 0; any other form is adapted by EES; the order by which
the equations appear is also totally flexible.

Lower and upper bounds for each variable may also be changed; by default all possible values
(-infinity to +infinity) are considered. Units may also be assigned to each variable, and this
information will be added to the results and outputs related to those variables (not mandatory).

E&] Variable Information ? X
o R
Variabl Guess + Low Upps Display Unit: Alt Units Key  Commen t
A 2] -infinity infinity A 3 N
x 1 -infinity infinity A 3 N
x2 1 -infinity infinity A 2 N
3 1 -infinity infinity A 3 N
v 0K [ Apply & Print T Update X cancel

Figure 2.3 — List of variables for the example of Figure 2.2.
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After choosing in the menu Calculate — Solve, the iterative process is started, with the solution
of the linear set of equations (1.12) in each iteration, as imposed by the Newton-Raphson
method. The derivatives in (1.12) are calculated by numerical differentiation. The process
continues until the established errors are met, or until no solution is found. A maximum error
for all variables, and a maximum number of iterations are defined by default, but those values
may be changed (Options — Stop Criteria). After conclusion of the calculations the Solution
Window will pop up — Figure 2.4 — showing the results for all variables (and their units if
previously defined).

S [@ =]
Main | L

Unit Settings: S| C kPa kJ mass deg

A=2 X1 =-0,459 X2 =1,091 x3 =1.081

Mo unit problems were detected

Compilation time = 125 ms  Calculation time = 16 ms

Figure 2.4 — Solution window for the example of Figure 2.2.

If the iterative calculation process is not successful, the initial/guess values may be changed
and the calculation repeated. This depends on the equations and guess values, and will be
discussed in the application examples of chapters 3 and 4.

2.1.2 Physical properties and library data

EES includes a database for solid and fluid physical properties. They can be used in equations,
where they are defined by internal functions. By choosing in the menu (Options — Function
Info) a window appears where different options may be chosen. The first option is related to
Math functions, such as absolute value, exponential function or trigonometric functions — see
Figure 2.5(a). The second option is “Thermophysical properties” — Figure 2.5(b). There,
different solids or fluids may be chosen; the database includes a wide range of materials and
fluids found in engineering applications.

After choosing the fluid and the property in the Function Info window, information is given on
the function name and arguments — Figure 2.5(b). As examples, for the specific heat of air and
specific mass of water, these properties may be written in the Equations Window as:

c_p = Cp(Air; T = 20) * 1000
rho = Density(Water; T = T1; p = 100)

2.1)

(22)

7 x| Function Information 7 %
( EES library routines € EES library routines
¢ External routines ¢ Extemal routines

¢ Component Library ' Component Library ¢ Component Library
P oot © Realfluids " AWH20 (" Biines Flow thronch a i

unction Info i ifi low throu a pipe
g et Clascihicalion © \dealgases " NASA  © Incompressible ah & pip:

Intemal Flow - Dimensional ~
ANGLE ?  Fluid Info rp
NCLERaD B : Heat Transfer (2009)
ARCCOS = ion to Heat Transfer (2020}
ARCCOSH A bv G F Nellis and § A Klein
ARCSIN Cambridge University Press
ARCSINH I-
RCTAN ensity [kg/m3]

ARCTANH Dipole [debye] 7 Info ) View
ARRAYELMT ek_LJ K]
AVERAGE nthalpy [kJ/kg] "
AVGLOOKUP ? Index
AVGPARAMETRIC LT Dl
BEEP
BESSEL_I0
Ex: [#-abs{¥alue) Ex: [cp=CalAir_ha:T=T:P=P) [ Ex: [call FipeFlowl'air T_P.m_dotD L RelRough:h_T. h_H DELTAP. Husselt_T

7 o x_om | B e X _ome

Figure 2.5 — Function information: (a) math functions; (b) properties; (c) heat and flow calculations.
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In equation (2.1) the underscore sign (between ¢ and p) that may be used in a variable name,
allows p to become a subscript in future windows and variable outputs (appearing as c,). If the
fluid — Air — is considered as an ideal gas, only the temperature needs to be defined (it may be
a number or a variable in another equation); if a real gas is considered — Air_ha — then the
pressure also needs to be defined. The multiplication by 1000 is due to the default definition of
units in EES (using the SI system). Default energy quantities come in kJ, and to keep
consistency with the main unit (J) the multiplication is needed. Note that units and multiples
may be changed in the menu Options — Unit System.

In equation (2.2) the name rho was used for the specific density of water. Writing the variable
name with a Greek letter name, lately assigns the symbol of the Greek letter to the variable
(p in this case), which will show up in results, tables or graphs. Here the temperature is defined
as another variable (T1) and the pressure as 100 kPa (as the default pressure unit/multiple is
kPa).

EES also contains library routines and internal functions that help in many problems. Heat
Transfer & Fluid Flow calculation tools are particularly useful. As Figure 5.2(c) shows, they
may be seen as the 3™ option in the Function Info window — in that figure the subject of
convection was chosen, and a function to calculate the convection coefficient and pressure drop
in a pipe flow is shown (“call PipeFlow”). When this function is pasted to the Equations
Window, it will automatically calculate the required outputs, as a function of the inputs (in the
case of PipeFlow: fluid name, geometrical dimensions, temperature, pressure, flow rate, tube
roughness). Correlations for convective heat transfer found in the literature, [4, 5], are available,
and the flow regime is also taken into account in the calculations. Many other functions, such
as those for heat exchanger calculations, thermal radiation and mechanical design, are also
available.

2.2  Expressing varying conditions — functions and procedures

In several numerical models the set of equations to solve varies according to different problem
conditions or restrictions. For instance, considering a heating source, the energy delivered may
be varied according to a given control algorithm, depending on a variable temperature which is
calculated in the model (not fixed). EES allows expressing those variations and relationships
through the use of FUNCTIONS and PROCEDURES. They allow combining conventional
programming with the set of equations in the model.

They are defined in the Equations Window, but have to be declared/written before all other
equations. If more than one FUNCTION or PROCEDURE exist, they should be placed in any
order, but before the main equations. They may serve to repeat a calculation that occurs several
times in the equations, or to express a logical condition. In this last case, the use of IF-THEN-
ELSE instructions is frequent.

The difference between a FUNCTION and a PROCEDURE is that while a FUNCTION
provides only one output to the equations, a PROCEDURE provides more than one output.
Both may have receive one or more inputs from the main equations. Both must be given a name,
but are called in a different manner by the main equations.

A FUNCTION is defined by its name, followed by the input variable(s) between brackets (if
more than one, they must be separated by commas). And it is ended by the END instruction. A
FUNCTION is called in a main equation by just writing its name and again the input variable(s)
between brackets. APROCEDURE is also defined by a name, followed by brackets that include
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the input variable(s) and the output variables (variables must be separated by commas, and to
separate inputs and outputs a colon must be used). It is also finished with the END instruction.
The PROCEDURE is called in the main equations by a special instruction: CALL, followed by
its name, followed by the inputs and outputs between brackets. This is similar to what Figure
2.5(c) shows for the PipeFlow calculation tool.

Several examples of FUNCTIONS and PROCEDURES will be shown in chapters 3 and 4.

2.3 Tables
There are 3 different types of tables in EES: Lookup tables, Parametric tables and Array Tables.

A Lookup table may be created or modified through the menu. To create one, choose
Tables — New Lookup Table — see Figure 2.6. The Lookup table is used to define inputs to the
equations that are in tabular form. Many tables may be created, and, additionally, using
interpolation functions it is possible to obtain intermediate values (from the tabulated ones).
Any number of rows and columns may be created in this table, or modified after (Insert/Delete
Lookup Rows or Cols). Any value in a Lookup table may be read in the equations by using
instructions like LOOKUP, LOOKUPROW, LOOKUPCOL. Applied examples will be shown
in chapters 3 and 4.

i EES Academic Professional:
File Edit Search Options Calculate | Tables Plots Windows Help Examples
== =] E MewParameiric Table 1EE meE

Alter Values |

E
2]
=
3
i

Equations Window
Retrieve Parametic Table

Open Lookup Table

Insert/Delete Lookup Rows
Insert/Delete Laokup Cols

Delete Lockup Tables
Save Table

Lincar Regression

Figure 2.6 — Tables menu.

A Parametric Table may also be created or modified through the menu — see Figure 2.6. As the
name suggests, it is appropriate to perform parametric analyses, allowing to vary one or more
input variables and storing the results. Therefore, this table includes both inputs and output
calculations. The inputs and outputs for each set of inputs is located in one row, and many rows
may be created/added. Each row is identified with Run followed by the row number —see Figure
2.7. Several different tables may be created, with different names (“Table #” by default).

ES Parametric Table E=8EcR ™|

Table 1 |
<=

wliu a m T, T
Wi [kg/s] [°C] [°C]
Run 1 1500 0,05826 47.03 5318
Run 2 1750 0,06144 51,71 58.51
Run 3 2000 0,06434 564 6383
Run 4 2250 0,067 61,11 59.13
Run 5 2500 0,06943 65,83 7442
Run 6 3000 0,0739% 75,3 84.96
Run 7 3250 0,07601 80,04 90,22
Run 8 3500 0,07795 84,8 95.47
Run 9 3750 0.0798 89,56 100,7
Run 10 4000 0.1042 91,11 109.6

[!‘z [!‘z 4

I!‘

Figure 2.7 — Example of a Parametric Table (“Table 1”).
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When creating the Parametric Table, the inputs and outputs are chosen from the available
variables found in the Equations Window. When many variables occur, only the most
significant outputs are usually included. By default, EES distinguishes with a different colour
the inputs (in black) and the outputs (in blue) — see Figure 2.7. The colours may be changed in
the menu (Options — Preferences — Display).

To fill a Parametric Table, EES is run several times. To achieve this, one must choose in the
menu Calculate — Solve Table. Then the rows are calculated and filled in sequence. One run
may use values from a previous run, using instructions such as TABLEVALUE. To use it, the
full instruction, written in the Equations Window, should be TABLEVALUE('TableName',
Row, Column), or TABLEVALUE('TableName', Row, 'VariableName").

Note that, according to the user, a different option related to the decimal point system used in
the computer might occur. In the UK/USA system the dot is used as a decimal point, while in
most European countries a decimal comma is used. The decimal comma is used throughout this
book, and this may be noticed in Figure 2.7. Also, some instructions and functions use the
semicolon (;) instead of the comma to separate variables.

An Array Table is automatically created by EES when array variables are defined in the
Equations Window, and calculations are made. This table stores all the results related to the
array variables. Figure 2.8 shows examples for one and two array variables. Note that the first
index is displayed in rows and the second in columns. Therefore, when associating the indices
with horizontal and vertical directions, it is preferable to use the first index as the one
corresponding to the vertical direction.

[ Arrays Table (=R SR ) 8] Arrays Table ===
Main 1 Main 1
<D Eep 5 5 . . n
Sort ny ‘ i ‘ Sort Tiq Tiz Tis Tra T; ‘ Tis Tiz Tig Tia Tin Tt
1 8.461 100 [1] 20 20 20 20 20 20 20 20 20 20 20
[2 8.221 901 [2] 40 1 3TN 35,29 33,75 32,56 31,62 30,87 30.27 29,77 29,34 28,98
[3] 7.989 81,58 I [3] 40 39.78 3943 39.01 38,56 38,09 37,64 3719 36,77 36,37 35,99
[4] 7765 7423 [4] 40 39,99 39,95 399 39.83 39.73 39,62 3949 39,36 39,21 39,05
[51 7.549 67.87 [5] 40 40 40 39,99 39,98 39,97 39,96 39,94 39,91 39,88 39,84
[6] 7.342 62,36 [6] 40 40 40 40 40 40 40 39,99 39,99 39,99 39,98
7 7,143 57,69 [ 40 40 40 40 40 40 40 40 40 40 40
[8] 6.954 53,46 [8] 40 40 40 40 40 40 40 40 40 40 40
[9] 6.774 49 87 91 40 40 40 40 40 40 40 40 40 40 40
[10] 6.603 46,77 [10] 40 40 40 40 40 40 40 40 40 40 40
[11] 6.443 4409 [11] 40 40 40 40 40 40 40 40 40 40 40
2] 6,293 41.78 [12] 40 40 40 40 40 40 40 40 40 40 40
3] 6,155 39.81 [13] 40 40 40 40 40 40 40 40 40 40 40
[14] 6,029 38,13 [14] 40 40 40 40 40 40 40 40 40 40 40
[15] 5916 36.71 [15] 40 40 40 40 40 40 40 40 40 40 40
1161 5817 35 54 18] 40 40 40 40 40 40 40 3999 3999 3999 3998
R 5733 34 59 [ 40 40 40 3999 3998 3997 3996 3994 3991 3988 3984
RE 5664 3388 [18] 40| 3999 | 3995 399 3983 | 3973 3962 3940 3936 3921 3905
9] 5611 3331 [19] 40| 3973 | 3943 3901 3856 | 38,09 3764 37A9 3677 3637 | 3699
20] 5575 1295 20] 40| 3731 3829 3375 3256 | 3162 3087 3027 2977 | 2934 2898
121 5658 3277 Ei‘ 20 20 20 20 20 20 20 20 20 20 20 .
< > < >
a b

Figure 2.8 — Array Tables: (a) 1 index array variables - h[i], T[i]; (b) 2 indices array variable - T[i, j].

Although an array variable may have more than two indices, a table is only available for 1 or 2
indices, as shown in Figure 2.8.

Outputs from the Arrays Table may also be graphically represented, as explained in the next
section.
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2.4  Graphical outputs

With EES, multiple graphs may be created from any of the tables seen in the previous section.
The menu option to create a graph is: Plots — New Plot Window. Different types of graphs
may be generated, with one (X-Y Plot) or two (X-Y-Z) independent variables — see Figure 2.9.
Thermodynamic property graphs, such as a pressure-enthalpy graph, may also be created
(Property Plot).

EE4 EES Academic Professional:

File Edit Search Options Calculate Tables Plots Windows Help Examples

=™ | v ! New Plot Window > X-¥ Plot Guisai=X [T [ 0 B M | 7
— . . Overlay Plot Bar Plot Ctrl+Alt+B
Equations Window
Medify Plot X-Y-Z Plot Ctrl+Alt+Z
Modify Axes Polar Plot Ctrl+Alt+P
r
Show Tool Bar Ctrl+T

Delete Plot Windows

Property Plot

Curve Fit

Plot Thumbnails

Figure 2.9 — Choice of plot type in the EES menu.

Existing graphs may be modified — see Figure 2.9. All points corresponding to the existing table
cells can be represented, as well as connecting curves between the represented points. It is also
possible to perform curve fitting, with different function types, using the least-squares method.

Linear and log scales may be used, and comments and drawings may be added later to the
graphs. All scales and sizes are customizable. The next chapters will present many examples of
1D and 2D graphs, used to represent the results.
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3 Global modelling examples

This chapter presents several examples of numerical models applied to thermal systems with a
global approach. The models are first discussed, and then EES is used as a tool to obtain the
solutions and perform parametric/sensitivity analyses. The EES equations/codes are also
presented. Most of the examples are related to dynamic situations, with temperatures and other
properties varying along time.

As remarked in chapter 2, in the UK/USA system the dot is used as a decimal point, while in
most European countries a decimal comma is used. In this book, the decimal comma is used,
and this affects the use/appearance of some instructions and functions, when compared with the
EES software manual: as a comma replaces the dot, the sign for semicolon (;) is used to replace
the comma.

3.1 Air cooling system with thermostatically controlled valve

[/}
1=6"c Ty ¢,=i/[p
p] p2 p3 — pJ M 0012 valve fully open
AAAAAANAANAN O
: < AAAAAAA—] H
O . _ 1
o1 va=7000w/k  May=4kg/s !
_ 10 12 T(°C)
Tair,out Tainin =28°C
a b

Figure 3.1.1 — Air cooling system: (a) air and cold water circuits; (b) valve control function.

Figure 3.1.1 represents an air cooling system, in which a stream of air is cooled through heat
exchange to a stream of cold water. The water is moved by a pump with the following
characteristic:

ADpump = P2 — p1 = 120000 — 15400 M? (3.1.1)
The pressure loss in the heat exchanger is given by:
Apyy = p3 — psy = 9260 M? (3.1.2)

The valve is controlled through measurement of the air outlet temperature, with its pressure loss
coefficient given in the above graph (Figure 3.1.1(b)).

The overall heat transfer coefficient in the air cooler (heat exchanger) may be considered
independent of M (approximation), with UA = 7000 W/°C.

To calculate the heat transferred in the heat exchanger, the following equation can be used:
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3.1 - Air cooling system with valve

Chapter 3 — Global modelling examples

Q' =UA ATln =UA (Tair,in_’;};)i;i(:ﬁl;‘r;out_@

ln(—)
Tair,out‘6

(3.1.3)

Develop a numerical and a computational model to calculate M, T, and Ty .- Analyse the
effect of varying T,y in.

This air cooling system operates under steady-state when inlet air and inlet water temperatures
are constant, as well as flow rates. However, the cooling water flow rate is controlled by the air
outlet temperature, so that when the air inlet temperature becomes lower it will be possible to
decrease the water flow rate, and therefore the cooling capacity. The water valve is fully open
for outlet air temperatures above 12°C, and starts closing below that.

Under the conditions in Figure 3.1.1(a), with T, ;, = 28°C, we may find M, T, and Ty oyt
using a set of algebraic equations. One expresses the pressure balance in the water stream:

Appump = Apux + APvaive (3.1.4)

neglecting pressure losses in the connections, which gives

120000 — 15400 M? = 9260 M? + M?/C,* (3.1.5)
and where
¢, = f(Tair,out) (3.1.6)

according to the control function in Figure 3.1.1(b).
Another equation results from assuming there are no heat losses in the heat exchanger, meaning
that the heat rate received by the water is equal to the heat rate lost by the air:

M Cp,w(T4 - 6) = Mair Cp,a(28 - Tair,out) (3.1.7)

and a final one from the HX performance:

M CP,W(T4 - 6) = 7000 (28-T4)—(Tair,out—6)
ln(T

28-T4 )
air,out=6

(3.1.8)

The set of equations (3.1.5), (3.1.7) and (3.1.8), with the valve constant defined in (3.1.6),
allows the calculation of the 3 unknown variables (M, T, and Ty oue)- It is @ non-linear set
which we will solve with EES. We may write the 3 equations, with the valve constant defined
in a Function, placed in the Equations Window before the equations. To assess the specific heat
of both fluids we will use EES property database; as those properties do not significantly change
with temperature, we will fix them at the inlet temperatures; note that we could use c,, values
calculated for the average inlet/outlet temperatures, but this would add another 2 variables to
the equation model, as the outlet temperatures are not known.

Figure 3.1.2 shows the Equations Window to solve the model.
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Equations Window EI@
FUNCTION valve(T)
IF T=12 THEN
valve=0,012
ELSE
valve=0,006%(T-10)
ENDIF
END
120000-15400"M_dot"2=9260"M_dot"2+M_dot"2/C_v"2
C_v=valve(T air_out)
M_dot*CP({Water, T=6,P=100)*(T_4-8)=4*CP{Air,T=T_air_in)*(T_air_in-T_air_out)
M_dot*CP(Water;T=6;P=100)*(T_4-6)*1000=7000*((T_air_in-T_4)-(T_air_out-8)¥In{(T_air_in-T_4)(T_air_out-5}))

Q_dot=M_dot*CP(Water, T=6;P=100)%T_4-6)*1000

EU |Linet1 Char 12 Wrap: On | Insert Caps Lock: Off |51 CkPa k) massdeg | Warnings: On | Unit Chic On Cormnplex: Off Synt

Figure 3.1.2 — Equations Window for the air cooling system model.

Note that in the equivalent of equation (3.1.8) the specific heat of water was multiplied by 1000,
as the c,, default units are kJ/kgK. Also note that, instead of fixing the inlet air temperature at
28°C, a variable was used (T, i) to investigate its effect on the results. Its value was then
defined in a Parametric Table, and the solving menu choice (Calculate — Solve Table) led to
the results in Figure 3.1.3.

In order to obtain convergence it was necessary to impose some initial/guess values for some
variables, instead of using the default values of 1. The initial C;, was taken as 0.012, and Ty ¢
and T, were changed to more realistic values (T4 out < Tair,in @nd T, > 6). Those guess values
were only used in the first Table Run, as in later runs the solution from the previous run is used
as initial guess.

& Parametric Table E|E|@
Table 1
<= 2 3 4 5
—D—; Ta\r'in j Tairnut lz‘ ] r!] T4 j Q j
[°Cl ['C] [kg/s] [°C] W]

Run1 18 10,48 0915 13,85 30196
Run 2 20 10,64 1,143 13,83 37596
Run 3 22 10,85 1,377 13,74 44811
Run 4 24 1,11 1,596 13,72 51788
Run 5 26 11,44 1,777 13,83 58506
Run 6 28 11,83 1,908 14,11 64996
Run7 30 1231 1,049 14,68 71103
Run 8 32 12,84 1,049 15,41 77032
Run 9 34 13,37 1,049 16,13 82962
Run 10 36 13,89 1,949 16,85 88892

Figure 3.1.3 — Parametric Table to assess the effect of changing Ty, i

Note from the results in Figure 3.1.3 that when T, ;, = 28°C the valve is not totally open, as
the outlet air temperature is below 12°C.

Figure 3.1.4 shows in a Plot Window the air outlet temperature and water flow rate when the
air inlet temperature is changed, from 18 to 36°C. When the air inlet temperature is higher than
28°C the water flow rate is maximum; at lower values the flow rate decreases and cooling is
not so intense as with the maximum flow rate (green line shown in the graph). Figure 3.1.5
represents the heat rate for the different air inlet temperatures considered, again comparing with
the use of maximum flow rate.
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3.2 — Thermal bottle heat transfer

Chapter 3 — Global modelling examples

Tair;out [DC]
14

M [kg/s]
2,0

41,8

41,6

41,4

11,2

41,0

18 20

22

-0,8
24 26 28 30 32 34 36

Tair;in [OC]

Figure 3.1.4 — Outlet air temperature and water flow rate when T, ;, changes. Comparison with maximum flow
rate for all air temperatures (green line).
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Figure 3.1.5 — Cooling rate when Ty, ;, changes. Comparison with maximum flow rate for all air temperatures
(green line).

3.2

200 mm

6 56.4 mm
<«

¢ 70 mm

__ vacuum

- steel
~ (<< thickness)

—— hot water

Figure 3.2.1 — Thermal bottle.

Thermal bottle heat transfer

A thermal bottle is made with a stainless steel double wall,
with vacuum inside the steel sheets (each with negligible
thickness). When the bottle is closed it contains 0.5 litres of
hot water at 90°C. The outside (calm) air and surfaces are
at 20°C.

Heat exchanges at the top and bottom of the bottle may be
neglected. All bottle surfaces are gray and diffuse, with an
emissivity of 0.1.

Admiting that the water temperature is uniform, obtain its
time evolution using EES. Analyse the effect of different
time steps.

24



Heat Transfer: numerical modelling with EES applications

Evaluate also the thermal performance of the bottle when it is filled with cold water at 5°C, with
all outside temperatures at 20°C.

The model will consider that the kettle walls have negligible thermal inertia, due to the small
thickness and good conductivity of the walls. Therefore, it is assumed that the transfer of heat
from the water (at T,,) to the outside (T,,;) is done in quasi-steady mode. Figure 3.2.2 represents
the different heat transfer modes: internal free convection between the water and the inner wall
surface (at Ty;), thermal radiation through the vacuum between the two metal sheets, and
convection and radiation from the external wall surface (at T,) to the outside (air and outside
surfaces at T,,;). Free convection is also assumed in the outside air.

. : Qrad,ext
Qconv,int Qraa
o @]
Ty ) Text
conv,ext
Tsi Tse

R;=28.2mm
Re =35mm ‘

Figure 3.2.2 — Representation of heat transfer processes in the thermal bottle.

The variation of water energy is related to internal convection:

dT,

Mc
P at

= _hintAsi(Tw - Tsi) (3.2.1)
where h;,; is a function of (T, — Ty;). With negligible wall inertia, internal convection equals
the radiation balance between internal and external walls:

o(TE-TE
hintAsi(Tw — Ts;) = 1—851"( 7 . 1)—353 (3.2.2)

+ +
Asissi Asi'l Agsesse

as the view factor between the two walls can be taken as 1. In a similar manner, the external
wall balance will be:
o (Ts—Tse)

1-&;, 1 | 1-¢se
+ +
ASiESi Asi'l Aseése

= gseo-(Ts‘tz - T:xt)Ase + hextAse (Tse - Text) (3.2.3)

The right-hand side of (3.2.3) includes the radiation exchange between the bottle external wall
and external surfaces (with a much larger area), and free convection in the external air, where
hey: is a function of (Ts, — Toyr).

Equations (3.2.1) to (3.2.3) allow the calculation of the 3 unknown temperatures (T, Ts;, Tse)-
Equations (3.2.2) and (3.2.3) are non-linear algebraic equations, and (3.2.1) is a first order
differential equation. However, due to the dependence of h;,; on (T,, — T;), and to the non-
linearity of the radiation term, there is no exact solution to (3.2.1).
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Therefore, a numerical solution is needed. Using the (Euler) implicit method seen in (1.2.2) the
resulting discretised equation is:

daT,
TLHAt =T + At - —2 (3.2.4)
at lepat
which is equivalent to
Tt+At_pt pitAt, .
w v wo_ _ Lrlt;cp Si (T‘f/-l'At _ Tsti-l'At (325)

allowing the calculation of the water temperature after step At, depending on T}, (already

t+At t+At ; : t+At
known) and TE40 — hEHAY is a function of (TLMAE — TLHAY).

Equations (3.2.2) and (3.2.3) are valid for any t + At. Together with (3.2.5), and starting with
an initial value of the water temperature, it is possible to obtain the time evolution of the 3
temperatures. The free convection relationships between h;,; and h,,; and the temperatures
will be defined in EES, using its heat transfer correlation database, [3].

The EES calculation procedure will be developed with a Parametric Table (Table 1) where the
different time values are defined, step after step, or Run after Run. Figure 3.2.3 presents the
Equations Window, with the definition of equations (3.2.5), (3.2.2) and (3.2.3), plus
geometrical/problem inputs and the free convection functions. The time step was imposed at 60
s (1 minute), and its effect will be evaluated later.

For easier equation readability, Figure 3.2.4 presents the formatted equations.

=] Equations Window [ ]

D_i=0,0564
D_e=0,07

H=0.2

M=0,5

c_p=cp(Water,T-90; P=100)"1000 "in J/kgK"

epsilon=0,1 "emissivity of surfaces"

T_ext=20

DELTAt=60 "in seconds"

line=time/DELTAt+1 "line counter for Parametric Table"

hour=time/3600 "time in hours"

M*c_p*(T_w-T_w_oldyDELTAt=-h_int*pi*D_i*H*(T_w-T_si)

T_w_old=tablevalue(Table 1'; line-1; #T_w)

h_int"pi*D_i"H*(T_w-T_si)=sigma#*((T_si+273,15)*4-(T_se+273,15)"4)/((1-epsilon)/(epsilon*pi*D_i*H)+1/(pi*D_i*H)+(1-epsilon)/(epsilon"pi*D_e™H))
sigma#*((T_si+273,15)"4-(T_se+273,15)"4)/((1-epsilon)/(epsilon*pi*D_i*H)+1/(pi*D_i*H)+(1-epsilon)/(epsilon*pi*D_e*H))=(h_ext*(T_se-T_ext)+epsilon*sigma#*((T_se+273,15)"4-(T_ext+273,15)"4))*(pi*D_e*H)
Cali fc_vertical_cylinder('Air; T_se; T_ext; 100; H; D_e : h_ex{; Nusselt_e; Ra_eg)

Call fc_vertical_cylinder("Water'; T_w; T_si; 100; H; D_i : h_int; Nusseft_i; Ra_i)

Q_dot=sigma#*((T_si+273,15)*4-(T_se+273,15)4)((1-epsilon)(epsilon™pi*D_i *H)+1/(pi"D_i*H)+(1-epsilon)/(epsilon*pi*D_e"H))

h_rad_int=Q_dot/(pi"D_i"H~(T_si-T_se))

U=Q_dot/(pi"D_i"H*(T_w-T_ext)) "based on A_int'|

EU [Line: 17 Char 124 | Wrap: On | Insert Caps Lock: Off [S| CkPakl mass deg | Warnings: On | Unit Chk: On  Complex: Off | Syntax Highlight:On

Figure 3.2.3 — Equations Window for the thermal bottle heat transfer example.

In the Equations Window all T variables correspond to T2 values in the above equations.
The previous value T, is designated as T_w_old, or T,,.,;4. The time rows in the Parametric
Table are identified by a counter (“line”), starting with the first row with initial values. The
function TABLEVALUE recovers the previous temperatures (Ty, or T,,,.,,4) by searching them
in the previous row (line-1). The heat transfer rate for each time (Q_dot, or Q) was also
calculated, as well as the equivalent radiation coefficient between walls (h_rad_int, or h,q4.in¢)
and the overall heat transfer coefficient (U). The free convection functions were chosen from
the EES database, choosing convection in a vertical cylinder, with water on the bottle internal
surface and air on the bottle external surface.

Figure 3.2.5 shows a few of the initial Parametric Table rows. The numerical simulation was
extended to a period of 24 hours, or 86440 s, which corresponds to 1441 rows with At=60 s.
The calculations (Calculate — Solve Table) are started in Run number 2, as the first Run/line
is used to impose the initial temperature of 90°C.
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o o =R =T
D; = 0,0564 -
D, = 007
H o= 02

M o= 05

c, = Cp (WATER ;T=90;P= 100 J- 1000 indkgK

e = 01 emissivity of surfaces

T = 20

at = 60 inseconds

) time ) )

line = T+ 1 line counter for Parametric Table
time ) .

hour = ——— timeinhours

3600

Tuw — Twom
M-y - {7

Twes = TableValue (Table 1 line — 1; T, )
(T + 27315 ) — (1. + 27315 )

1-c 1 1-c
% D, H = D-H = % -D. H

Mige = % - Dy- H- (T, - Tg) = B56T0E-08 [Wim?K" - [
E

= [Naq [Toe = Te )+ & 5670E-08 [WimKY - (T, + 27315 }* = [Toq + 27315 *})- = - D, - H

1-: 1 1-2
- -

-®-D;-H % -D;- H g- % - Dg-

. Ta+ 27315 ) = (T, + 27315 )°
5670E-08 [WimZ-KY - [ (Tsi + 15 ) (Tee + 15 )
E g

Call fcveni:a\‘:ylir-:al('A‘R' D Teat Taq, 100 H; Do hgy MNusselt,; Raa)

Call £, erios oyinse WATER' ; T,0 Toi 1005 H; Dy @ i Nusselt;; Ra,)

4 4
. N T, + 27315 ) - (T, + 27315
Q = 5670E-08 [WmiKY - (Ts 15 ) (Tse 15
H

1- ¢ 1 1 - ¢
+ +
e-®-Dj-H %-Dj-H e ® - D, -
&
oD H - (Ta- Ta)
u = + based on A,
T % D H [Tw- Tex) o

Figure 3.2.4 — Formatted Equations window for the thermal bottle heat transfer example.

ES Parametric Teble EI@
Table 1 |
<=1 ]z (i | ]« ™= (bl (b ™= ™]s ™ . ™~
2 1441 time hour T Tsi Tee Ping Nest hrad:int u Q
[s] [hours] [*C] [*C] [*C] [Wim2*C] | [W/m2°C] | [Wim2°C] [[W/m2°C - in W]
Run 1 0 90
Run 2 60 0,01667 89,97 89,85 26,01 2553 3,535 0,4816 0,4394 1,089
Run 3 120 0,03333 89,94 89,82 26 2552 3,534 0,4815 0,4393 1,089
Run 4 180 0,05 89,91 89,79 26 2351 3,534 0,4814 0,4393 1,088
Run5 240 0,06667 89,88 89,75 26 2551 3,533 0,4813 0,4392 1,088
Run 6 300 0,08333 89,84 89,72 25,99 255 3,533 0,4813 0,4391 1,087
Run 7 360 0,1 89,81 89,69 2599 255 3,533 0,4812 0,439 1,086
Run 8 420 0,167 89,78 89,66 25,99 2549 3,532 0,4811 0,439 1,086
Run9 480 0,1333 89,75 89,63 25,99 2548 3,532 0,481 0,4389 1,085
Run 10 540 0,15 89,72 896 2598 2548 3,531 0,4809 0,4388 1,084
Run 11 600 0,1667 89,69 8957 25,98 2547 3,531 0,4809 0,4388 1,084
Run 12 660 0,1833 89,66 8954 25,98 2546 3,53 0,4808 0,4387 1,083
Run 13 720 0,2 89,63 89,51 2597 2546 3,53 0,4807 0,4386 1,082
Run 14 780 0,2167 896 8948 2597 2545 3,529 0,4806 0,4386 1,082
Run 15 840 0,2333 89,56 89 44 2597 254 4 3,529 0,4806 0,4385 1,081
Run 16 900 0,25 89,53 8911 25,97 254 4 3,529 0,4805 0,4384 1,08
Run 17 960 0,2667 89,5 8938 25,96 2543 3,528 0,4804 0,4384 1,08
Run 18 1020 0,2833 8947 89,35 25,96 2543 3,528 0,4803 0,4383 1,079
Run 19 1080 0,3 8944 8932 25,96 2542 3,527 0,4802 0,4382 1,078
Run 20 1140 0,3167 89 41 8929 2595 2541 3527 0,4802 0,4382 1,078
Run 21 1200 0,3333 89,38 8926 25,95 2541 3,526 0,4801 0,4381 1,077 1|,

Figure 3.2.5 — Parametric Table with results for the thermal bottle heat transfer example.
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To obtain the results in Figure 3.2.5 it was necessary to alter the initial guess values (by default
taken as 1) only for T,, and Tj;, to avoid a zero temperature difference in the initial iteration.
Figure 3.2.6 shows those guess values.

EE4 Variable Information
-
-
Yarnable Guess Lower Upper Display Units
Nusselt_i 1 -infinity infinity |A 2 M
C_dot 1 -infinity infinity |A |1 N/W
Ra_e 1 -infinity infinity |A 2 N
Ra_i 1 -infinity infinity |A 2 M
time 1 -infinity infinity A |1 MN|s
T_ext 20 -infinity infinity |A |1 N
T_se 1 -infinity infinity | A 1 N °C
T_si 89 -infinity infinity |A |1 N °C
T w 90 -infinity infinity |A |1 M °C
T_w_old 1 -infinity infinity | A 1 N
U 1 -infinity infinity |A |2 N W/m2°C - int

Figure 3.2.6 — Variable Info window with guess values for the thermal bottle heat transfer example.

Figure 3.2.7 presents several results in graphical form for the 24 hour period. Due to the good
wall insulation (vacuum), the water temperature (T,,) decreases slowly: after 12 hours it is still
above 70°C, and after 24 hours it is still near 60°C. The temperature of the wall inside surface
(Ty;), represented by the green squares only, is almost equal to the water bulk temperature — the
difference is usually only about 0.1°C. This is a consequence of the much higher free convection
coefficient of the water, compared to the air one; while h;,, varies between 255 and 188
W/m?°C, h,,, varies between 3.5 and 3.0 W/m?°C; the internal convection resistance is much
lower; even with the addition of the external radiation coefficient (h, 44 ¢x¢), the total external
coefficient is still much lower than the internal one. The bottle external surface temperature is
always close to the outside temperature, varying between 26.0 and 23.2 °C. The graph also
shows the evolution of the overall heat transfer coefficient (U), which varies between 0.44 and
0.37 W/m?C. The radiation coefficient inside the double wall varies from 0.48 to 0.41 W/m?°C.

0, 06 h, U (W/im%pkK)
TEC) | e

40[

03

30f

0 2 4 6 8 10 12 14 16 18 20 22 24

hour

Figure 3.2.7 — Evolution of temperatures and heat transfer coefficients for the thermal bottle example.

Figure 3.2.8 shows the evolution of h;,; along time.
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Figure 3.2.8 — Evolution of water free convection coefficient for the thermal bottle example.

To analyse the effects of different time steps, it is necessary to change DELTAL in the Equations
Window and adapt the time in the Parametric Table to reflect the time step. Using 600 s instead
of 60 s, the differences are very small: the water temperature after 12 hours becomes equal to
71.67°C instead of 71.63°C, while after 24 hours it becomes 59.02°C instead of 58.97°C. With
a time step of 30 min the water temperature after 12 hours becomes equal to 71.75°C, while
after 24 hours it becomes 59.13°C. Therefore, any of the values used is adequate in this example.

Now let us look at the cold water situation, when the water is introduced in the bottle at 5°C.
To simulate this case it is only necessary to alter the first row of the Parametric Table to the
initial water temperature of 5°C (instead of 90°C), and the 2 initial guess values T,, and Ty; (for
instance, to 5 and 6°C, respectively). This will converge to the solution represented in Figure
3.2.9. As can be noticed, the heat transfer coefficients have a smaller variation, as well as the
temperatures; this is due to the lower driving force for the heat transfer between outside and
inside. The water temperature is kept below 8°C during 12 hours and below 10°C after 24 hours.

T (°C)

Figure 3.2.9 — Evolution of temperatures and heat transfer coefficients when the water is introduced at 5°C.
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Chapter 3 — Global modelling examples

3.3 Electric kettle

An electric kettle is filled with 1 litre of water at 20°C. The kettle
is switched-on, heated by an electric resistance at the base, with a
useful power of 750 W. However, the lid is kept open to the outside
air, at 20°C and 40% relative humidity. Assume the kettle has a
cylindrical shape, with a diameter of 10 cm, and its wall has a
negligible thickness. Thermal radiation from the outer wall may be
neglected, but the water surface has an emissivity of 0.9.

Admiting that the water temperature is uniform, obtain its time
Figure 3.3.1 — Kettle. evolution until it reaches 100°C, taking into account heat losses at
the top surface and side wall.

The model will consider the water at uniform temperature, which is reasonable due to the free
convection currents, and that the kettle wall has negligible thermal inertia, due to the small
thickness. There is heat transfer from the water top surface (at T,) to the outside (at T,,;) by
different modes: evaporation to the outside air, thermal radiation exchange with outside
surfaces (also at T,,;), and free convection to outside air. Heat losses through the side wall
include free convection between the water and the wall, and then free convection from the wall
to the air (outside radiation neglected). Figure 3.3.2 represents the different heat transfer modes.

Text » ¢ext
(@)
Qrad,top QQU“P Qconv,mp
o
Ty
127 mm o

QCO?W,l',Sidé Qconv,e,side Toxt

Presistw

® 100 mm ‘

Figure 3.3.2 — Representation of heat transfer processes in the kettle.

Due to the top surface evaporation there is also a loss of liquid water. Although small, it will
also be considered. The rate of evaporation (and mass loss) depends on the difference in water
vapour concentration between the liquid surface (saturated air) and outside air (depending on
its temperature and humidity), and on the mass transfer coefficient. Then, the differential
equation to express the change in the liquid water mass is

dM,,

dt = _hmAtop [pv,sat(Tw) - ¢extpv,sat(Text)] (3.3.1)

where ¢, is the air relative humidity and p,, 54, the vapour concentration of saturated air,
which may be calculated with the EES property database as a function of temperature (T,, or
T..:).- The mass transfer coefficient may be related to the heat convection coefficient with the
Lewis relationship, [5]:
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hp = h Dv,air/kair (3.3.2)

where D, 4, is the mass diffusivity for water vapour in air.

The variation of water energy (temperature) is related to the heat rates shown in Figure 3.3.2,
with

d(MycpwTw) . . . .
dt = Presist - Qconv,i,side - Qevap - Qrad,top - Qconv,top (3.3.3)

and using temperatures and coefficients:

d(MwcpwTw) _

dt - Presist - hside,intAside (TW - Twall) - hmAtopAvahlv -
_SWO-(TV?/ - T:xt)Atop - htopAtop (Tw - Text) (3.3.4)

On the other hand, the kettle wall balance, neglecting its thickness, and external radiation, is

hside,intAside (Tw - Twall) = hside,extAside (Twall - Text) (3.3.5)

All h convection coefficients are a function of temperatures (free convection), and will be
calculated with the EES heat transfer correlation database. Therefore, equations (3.3.1), (3.3.4)
and (3.3.5), with the help of (3.3.2) allow the calculation of the water mass (M,,) and the 2
unknown temperatures (T, Tyqu)- Equations (3.3.1) and (3.3.4) are first order differential
equations, that have to be solved simultaneously.

Therefore, a numerical solution is needed. Using the (Euler) implicit method seen in (1.2.2),
with the derivatives calculated at t + At, the resulting discretised equations for M,, and T,, are:

M&/+At—M‘g/

At = _hgr-l'_AtAtop [pv,sat(va/+At) - ¢extpv,sat(Text)] (3-3-7)

and

MGG —ME T, L pteAt g (Tt+At _ Tt+At) _
Cpw AL = Fresist side,intside\ 1w wall

4
—hEr Ao B8 Ahyy — 4,0 (TS = The) Atop = huopAtop (TS = Toxt) (338

allowing the calculation of the water mass and temperature after step At, with T,;*At depending
on T}, (already known) and T5TA6 — hEFAL is a function of (TSHAE — TEFAY),

Equation (3.3.5) is valid for any t + At. Together with (3.3.7) and (3.3.8), and starting with the
initial values of the water mass and temperature, it is possible to obtain the time evolution of
the mass and temperature.

The EES calculation procedure will be developed with a Parametric Table (Table 1) where the
different time values are defined, step after step, or Run after Run. Figure 3.3.3 presents the
Equations Window, with the definition of all equations, plus geometrical/problem inputs,
properties and the free convection functions. The time step was imposed at 5 s. In the Equations
Window, M and all T variables correspond to t + At values. The previous values are designated
as M_w_old, or M,,.,;,4, and T_w_old, or T,,.,,4. The time rows in the Parametric Table are
identified by a counter (“line”), starting with the first row with initial values. The function
TABLEVALUE recovers the previous mass and temperatures by searching them in the previous
row (line-1). For easier equation readability, Figure 3.3.4 presents the formatted equations.
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Equaticns Window

"KETTLE 750 W with losses on top by evaporation, convection and radiation and also side wall losses”
“initial mass 0,998 kg - 1 litre; variation of mass due to evaporation”
Diam=0,10:L=(Diam/2)"2/Diam:A_top=pi*Diam"2/4:Height=0,001/(pi*Diam"2/4)

T_ext=20: phi_air=04

P_resist=750

tho_w=density(Water, T=20.P=101)

c_p_w=cp(Water, T=20;P=101)"1000 "in J/kg"C"

M_init=1*rho_w/1000 "M_init=0.9982 kg"

(M_w-M_w_old)/DELTAt=-m_dot_evap®A_top “implicit method”

c_p wiM w*T_w-M w_old*T_w_old)/DELTAt=P resist-Q_dot_evap-Q_dot_conv_top-Q_dot_rad top-Q_dot_side "implicit method”
DELTAt=5

line=time/DELTAt+1

M_w_old=tablevalue(Table 1;line-1:#M_w)

T_w_old=tablevalue(Table 1:line-1#T_w)

Call fc_plate_horizontal2(Air: T_w; T_ext; 101; L: h_top: Nusselt_top; Ra_top) "calculate convection coeff in top surface”
D_v_air=2,6e5

P_vs_sur=p_sat(Water. T=T_w) "in kPa"

R_v=R#M18 "in kl/kgK"

rho_vs_sur=P_vs_sur/(R_v*(T_w+273,15))

'_vs_air=p_sat(Water, T=T_ext) "in kPa"

rtho_vs_air=P_vs_airf(R_v*T_ext+273 15))

h_m=h_top*D_v_air/k_air "mass transfer coeff’

k_air=conductivity{Air, T=T_ext)

m_dot_evap=h_m*(rho_vs_sur-phi_air‘rho_vs_air) "in kg/s/m2"

Q_dot_evap=m_dot_evap*enthalpy_vaporization{Water, T=T_w)*1000*A_top "in W"
Q_dot_conv_top=h_top*(T_w-T_ext)*A_top

Q_dot_rad_top=0,9"sigma#™((T_w+273 16M-(T_ext+273 16)*4)"A_top "outside surfaces at T_air”
Q_dot_side=h_side_int*pi"Diam™Height™(T_w-T_wall)
Q_dot_side=h_side_ext*pi*Diam*Height*(T_wall-T_ext} "negligible thermal radiation”

Call fc_vertical_cylinder(Water’; T_w; T_wall; 101; Height; Diam : h_side_int; Nusselt_side_int; Ra_side_int}
Call fc_vertical_cylinder(Air; T_wall; T_ext; 101; Height; Diam - h_side_ext; Musselt_side_ext; Ra_side_ext)

T_nolosses=T_ext+P_resist™time/(M_init"c_p_w)

EU |Line: 21 Char: 39 Wrap: On | Insert Caps Lock: Off | 51 CkPa k) mass deg | Warnings: On | Unit Chke On Complex: Off S

Figure 3.3.3 — Equations Window for the kettle heat transfer example.

Formatted Equations
~
KETTLE 750 W with losses on top by evaporation, convection and radiation and also side wall losses
initial mass 0,998 kg - 1 litre; variation of mass due to evaporation
Diam = 01 iam T 0,001
Diam Diam?  Height = ————
2 Apg = @« —— Diam *
L= d 4 we—
Diam 4
Tea = 20 45 = 04
Prsix = 750
Py = o (WATER ;T=20;P=101)
Cow = Cp (WATER ;T=20:P=101)- 1000 inJkg"C
Pw
Mg = 1 Joo5 Mei=0,9882 kg
My = Mags -
= = — Mgz A Implicitmethod
My - Ty = Myos - Tuo , .
T - — Quervip— Qussiop — implicit method
A =5
time
line = + 1
at
Tablevalue (Table 1'; line — 1; My )
Tuoa = TableValue (Table 1'; line — 1; T, )
Call lcvm.,wmﬁu(‘}\lR‘ DTt Tear 101 L0 Nyl Nusseltgy | Ram) calculate convection coeff in top surface
Dy = 0000026
Pussw = Poy (WATER ;T=T, ) inkPa
8314 [kJkmol-K]
R, = ————— inklkgK
18
. - Pusisur
e R,- (T, + 27315 )
Pussic = Pog (WATER ;T=Toq ) inkPa
. - Pusiai
e Ry (Tea + 27315 )
[ mass lransfer coeff
ke = k(AR T=Teg ) "
N (Pusswr = bar " Pusiar ) Inkalsim2
. o - ENMNAIDY aporaarn (Water ; T=T, )+ 1000 - Ay inW
convtop= Miop * (Tw = T} Aup
Qpagnop = 09 - 5ETOE-08 WInTKY - [(T, + 27315 J' = (Toq + 27315 ') - A, OUtside surfaces at Ty
Q. - = - Diam - Height - (T, - Ta )
Qe = - = - Diam - Height - (T, — Teq) negliginle thermal radiation
Call 16 urscaroymanWater ; T, 0 Ty : 101 Height Diam = hsqq NUSSeltisind R3ssemm)
Call 1€ amasioyinserl AT Tyml Taxa: 101 Height DIam @ Rgeme NUSSEMasee) RAssesa)
time
Troiosses = Text * Precit - .
Minit ~ Coim v

Figure 3.3.4 — Formatted Equations window for the kettle heat transfer example.
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§ Parametric Table EI@

Table 1 |
“H ™= ™= ™« ™= . ™ . [ ™= . ™= . ™0 ™ -
2. 04 time Tnulusses Tw Twall Orad;tup annv;tnp Qevap Qsida mevap Mw
[s] [°C] [°C] [°C] W] [W] W] W] [kg/(sm2)] [ka]

Run 1 0 20 20 0 0 0 0,9982
Run 2 5 20,9 20,9 20,87 0.0364 0,01983 0,633 00824 | 0,00003288 0,9982
Run 3 10 21,8 21,79 21,75 0,07311 0,04385 0,7542 01936 0,00003921 0,9982
Run 4 15 22,69 22,69 22,63 0,101 0,06909 0,8631 032 0,00004491 0,9982
Run & 20 23 59 23,59 235 0,1475 0,09592 0,9598 04576 | 0,0000505 0,9982
Run 6 2 24 49 24,48 24,38 0,1852 0,1238 1,078 06044 0,00008617 0,9982
Run 7 30 25 39 26,38 26,26 0,2232 0,1525 1,188 07588 | 0.0000619% 0,9982
Run & 38 26,29 26,27 26,13 0,2615 0,1819 1,302 0,92 0,000068 0,9982
Run 9 40 27,18 2717 27,01 0,3002 0,219 1421 1,087 | 0,00007425 0,9982
Run 10 45 28,08 28,06 27,88 0,3392 0,2426 1,544 126 | 0.00008075 0,9982
Run 11 50 28,98 28,95 28,76 0,3785 0,2737 1,672 1437 | 0,00008753 0,9982
Run 12 56 29,88 29,85 29,63 0,4182 0,3063 1,806 162 | 0,00009461 0,9982
Run 13 50 30,77 30,74 30,51 0,4582 0,3374 1,945 1,806 0,000102 0,9982
Run 14 65 3167 31,63 31,39 0,4985 0,3699 2,09 1997 | 0,0001097 0,9982
Run 15 70 3257 32,52 32,26 0,5391 04027 2,242 2191 0,0001178 0,9982
Run 16 75 3347 3341 33,14 0,5801 0,4359 24 2389 | 0,0001262 0,9982
Run 17 80 3437 3 34,01 0,6214 0,4695 2,566 2,69 0,000135 0,9981
Run 18 85 35,26 35,19 34,89 0,6631 0,5033 2,737 266 0,0001441 0,9981
Run 19 90 36,16 36,08 38,77 0,7061 0,5375 2,916 2859 0,0001537 0,9981
Run 20 95 37.06 36.97 36,64 0,7474 0,572 3,102 3061 | 0,0001637 0,9981
Run 21 100 37.96 37,86 37,52 0,7901 0,6067 3,296 3,266 0,0001741 0,9981
Run 22 106 38,86 38,75 38,39 0,8331 0,6417 3,499 3473 0,0001849 0,9981
Run 23 110 39.75 39,64 39.27 0.8765 0.6769 3,709 3683 0,0001962 0.9981
Run 24 15 40,65 40,52 40,14 0,9202 0.7124 3.928 3.895 0.000208 0.9981
Run 25 120 41,55 41.41 41,01 0,9642 0.7481 4.156 4109 0.0002203 0.9981
Run 26 125 42 45 42.3 41,89 1,009 0.7841 4.393 4,326 0.000233 0.9981
Run 27 130 4334 4318 42,76 1,053 0,5202 4.64 4545 | 0,0002463 0.9981
Run 28 135 4424 44,07 4363 1,098 0,8566 4.895 4765 0,0002601 0.9981
Run 29 140 4514 44,95 445 1144 0.8931 5,161 4988 | 0.0002745 0.9981
Run 30 145 46,04 45,83 45,37 1.19 0,9298 5,437 5213 0,0002894 0,998
Run 31 150 46,94 46,72 46,24 1236 0,9668 5,724 5439 0,0003049 0,998
Run 32 155 47,83 476 47,11 1282 1,004 6.021 5,667 0.000321 0,998
Run 33 160 48,73 48,48 47,98 1,329 1,041 6.329 5897 | 0,0003378 0,998
Run 34 165 49,63 49,36 48,85 1,376 1.079 6.648 6129 0,0003552 0,998
Run 35 170 5053 50,24 49,72 1424 1.116 6.98 6362 0,0003732 0998 |,
Run 71 350 82,85 81,31 8043 3.367 2,542 29,49 15,46 0.001629
Run 72 355 83.75 82,15 81.27 3.427 2583 3049 15,73 0.001686
Run 73 360 84,65 82,99 82,1 3,488 2,624 31,52 15,99 0,001745
Run 74 365 85,54 83,83 82,93 3,649 2,666 3257 16,26 0,001805

"Run7s | 370 86,44 84,67 83,76 3,61 2,706 3365 16,62 0,001866

"Run7é | 375 87,34 85,5 84,59 3,672 2,747 3476 16,79 0,001929

"Run77 | 380 88,24 56,34 85 42 3,734 2,788 35,89 17,06 0,001994

"Run7s | 385 89,14 8717 86,24 3,796 2,529 37.05 17,32 0,00206

"Run79 | 390 90,03 85 87.07 3,859 2,87 38.23 17.59 0.002128

"Runs0 | 395 90,93 88.83 57.89 3,922 2,911 39.45 17.86 0.002198
Run 81 400 91,83 89,66 88,71 3.985 2,952 40,69 18,12 0.002269
Run 62 405 92,73 90.49 89.53 4,048 2,993 41,96 18,39 0.002342
Run 83 410 93,63 91,32 90,35 4,112 3.034 4325 18,66 0.002416
Run 84 415 94,52 9214 9116 4177 3.075 44,58 18,93 0.002493
Run 85 420 95 42 92,96 91,98 4,241 3117 45,93 19,2 0,0025671
Run 86 425 96,32 93,78 92,79 4,306 3,158 47,32 19,46 0,002651

"Runsr | 430 97,22 94,6 936 4,371 3,199 48,73 19,73 0,002733

"Runss | 435 98,11 95.42 94 41 4,436 3.24 50,17 20 0,002816

"Rungy | 440 99,01 96,24 95 22 4,502 3,281 51,65 20,27 0,002902

"Run9%0 | 445 99,91 97.05 96,03 4,568 3322 53.15 20,54 0.002989

"Run91 | 450 1008 97 86 96,83 4,634 3,383 54,69 20,81 0.003078
Run 92 455 101.7 95,67 97 64 4.701 3.404 56,25 21,07 0.003169
Run 93 460 102.6 99 48 95 44 4,768 3.445 57,85 2134 0.003262
Run 94 465 103.5 1003 99,24 4,835 3.486 5948 21,61 0.003358 .

Figure 3.3.5 — Parametric Table with results for the kettle heat transfer example.
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The free convection functions were chosen from the EES database: convection in a vertical
cylinder, with water on the internal surface (for hg;4. i) and air on the external surface (for
Rsige ext); @nd convection to air on the top of an horizontal plate (for h,,).

To calculate p,, 54.(T), the saturation water pressure for T was obtained from the EES property
database (P_sat function), and by calculating p, 5q:(T) = Psq./(R,T). Alternatively, property
functions for humid air could have been used (AirH20 mixed fluid). Further details about the
use of EES in psychrometric calculations may be found in [6].

Figure 3.3.5 shows a few of the initial Parametric Table rows. The numerical simulation was
extended until the water reached 100°C, corresponding to a period of 465 s (94 rows with At=5
S). The calculations (Calculate — Solve Table) are started in Run number 2, as the first Run/line
is used to impose the initial temperature of 20°C. All initial/guess default values were used
(taken as 1), except T,, and T,,;;, to avoid a zero temperature difference in the initial iteration.
Figure 3.3.6 shows the list of variables and the guess values.

E&{ Variable Information
E
m| :

Variable Guess ¥ Lower Upper Display Units
A_top D,DD?BS-QJ -infinity infinity A 2 N
cpw 4184 -infinity infinity A M
DELTAL 5 -infinity infinity A M
Diam 0,1 -infinity infinity | A N
D_v_air 0,000026 -infinity infinity A 2 N
Height 0,1273 -infinity infinity A ]
h_m 0,003 -infinity infinity A M

h_side_ext 1 -infinity infinity | A N

h_side_int 1 -infinity infinity A N
h_top 1 -infinity infinity A N
k_air 0,02514 -infinity infinity A N

L 0,025 -infinity infinity A N
line 1 -infinity infinity A N
m_dot_evap 0,001 -infinity infinity A 2 |N| kglsm2)
M_init 0,9982 -infinity infinity A 2 N
M_w 1 -infinity infinity A 2 N kg
M_w_old 1 -infinity infinity A 3 N
Musselt_side_ext 1 -infinity infinity A 2 N
Musselt_side_int 1 -infinity infinity A 2 N

MNusselt_top 1 -infinity infinity A 2 N
phi_air 04 -infinity infinity A 0 N

P_resist 750 -infinity infinity A 0 N
P_vs_air 2,339 -infinity infinity A 0 N
P_vs_sur 1 -infinity infinity A 0 N

Q_dot_conv_top 1 -infinity infinity A 1 N W

Q_dot_evap 10 -infinity infinity A 1 N W

Q_dot_rad_top 1 -infinity infinity A 1 N W

Q_dot_side 1 -infinity infinity A 1 N W

Ra_side_ext 1 -infinity infinity | A N

Ra_side_int 1 -infinity infinity A N
Ra_top 1 -infinity infinity | A N

rho_ws_air 0,01728 -infinity infinity A N

rho_vs_sur 1 -infinity infinity | A N
rha_w 998,2 -infinity infinity | A N
R_v 0,4619 -infinity infinity A 2 N
time 1 -infinity infinity A 1 N s
T_ext 20 -infinity infinity A 1 N

T_nolosses 1 -infinity infinity A 1 N *°C
T_w 25 -infinity infinity A 1 N *°C
T_wall 24 -infinity infinity A 1 N °C
T_w_old 1 -infinity infinity A 1 N

v oK 5 Apply &2, Print |

Figure 3.3.6 — Variable Info window with guess values for the kettle heat transfer example.
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Figure 3.3.7 presents the evolution of water temperature (T,, ), and the comparison with the ideal
case when no losses occur (mass and energy). Note from the results in Figure 3.3.5 that the
mass loss due to evaporation only represents 0.4% of the initial mass, and therefore could have
been neglected. Taking into account the energy losses, the water takes 15 seconds more to reach
100°C (compared to no losses).

100

Tw (°C) no losses
90

80

70

60

50

40

30

20 4
0 50 100 150 200 250 300 350 400 450

time (s)
Figure 3.3.7 — Evolution of water temperature for the kettle example.

Figure 3.3.8 shows the evolution of the different heat rate losses. As can be seen, evaporative
losses are the most important ones, especially when the water temperature becomes higher. Top
surface losses also represent the highest share.
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Figure 3.3.8 — Evolution of heat rate losses for the kettle example.

The temperature of the wall (T,,4;;) is always very close to the water bulk temperature. This is
a consequence of the much higher free convection coefficient of the water, compared to the air
one; While hgge e Varies between 91 and 514 W/m?°C, hgge o Varies between 2 and 7
W/m?°C. The top coefficient varies from 3 to 6 W/m?C.
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34 Electric water heater
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Figure 3.4.1 — Water heater and daily water consumption pattern.

A system that provides domestic hot water uses an electrically heated storage tank with a
capacity of 100 litres. The total daily consumption is equal to 200 litres/day, according to the
graph in Figure 3.4.1.

The tank has the following characteristics:

= electrical resistance power: 2 kW;

= “on-off” resistance control: on at 50°C, off at 55°C;
= tank heat loss coefficient: 1.5 W/°C;

= inlet cold water temperature (from the mains): 15°C;
= outside (air) temperature: 20°C.

Assuming a global tank model, simulate a system daily cycle, using EES software. Obtain the
daily energy consumption and analyse the effect of varying the time step.

Compare the previous results with those for a proportional control of the resistance
(proportional band between 50 and 55°C).

The model will be based on the calculation of the tank water temperature (T'), considered to be
uniform. The variation of water energy is related to all energy inputs (resistance, water inlet
from mains) and outputs (water outlet, heat losses to the outside):

daT .
Mcp E = Presist + Mconscp (Tin - T) - (UA)tank (T - Text) (3.4.1)
Since P,.s;sc May assume 2 different values (0 or 2000 W), and M., is not constant, there is
no exact solution to the differential equation. Using the implicit method of numerical integration
we will have:

Tt+At_pt

1 .
A e, [PLdaE + MEEA c,y (Tiy — THHAY) — (UA) pani (THHAE = Top)| (342)

To solve equation (3.4.2), the model needs to define MEFAE — given in Figure 3.4.1 —and P/SAL,.

The resistance heat input is a function of the temperature (Tt+2%), but with an on-off control, it
is also a function of its previous state (P, ;): if the temperature is somewhere between 50 and

55°C, the resistance will maintain its previous state — it will stay on if it was on before At, and
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off if it was off before At. The behaviour of the resistance will be defined in EES with a
FUNCTION. The water consumption flow rate will be defined in a Lookup Table (Lookup 1),
translating the graph of Figure 3.4.1, and shown in Figure 3.4.2. The values of flow rate for a
given time will be read with the Lookup function, according to the time.

<=
Faste
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fole )

consumption
[Ithour]

Row 1
Row 2
Row 3
Row 4
Row 5
Row &
Row 7
Row 8
Row 9
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Row 11
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Row 14
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Row 16
Row 17
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Row 19
Row 20
Row 21
Row 22
Row 23
Row 24
Row 25
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9
10
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12
13
14
15
16
17
18
19
20
21
22
23
24

Figure 3.4.2 — Lookup table to define water consumption in the water heater example.

Then we may start with an initial value of the water temperature, and obtain the following
values. The EES calculation procedure will be developed with a Parametric Table (Table 1)
where the different time values are defined, step after step, or Run after Run. Figure 3.4.3
presents the Equations Window, with the definition of equations (3.4.2), and the control
function (RESIST), plus a few of the other input values. The time step was imposed at 60 s (1
minute), and its effect will be evaluated later.

Equations Window

FUNCTION RESIST(T:P)
P_max=2000
T_MAX=55
T_MIN=50
IF T>=T_MAX THEN

RESIST=0
ELSE|

ENDIF
END

V=100/1000 "m3"
DELTAt=60*1 "s"

T_ext=20
T_mains=15
UA=15

EU |Line:33 Char: 52

rho=Density(Water; T=50; p=100)
c_p=Cp(Water; T=50; p=100)*1000 "em J/kg/°c"

Wrap: On | Insert

E=SEan =

|
IF T==T_MIN THEN RESIST=P_max ELSE RESIST=P

hour=time/3600 "time defined in Parametric Table”
row_param="1+time/DELTAt "counts row number in parametric table”

tho™V*c_p*(T-T_old)DELTAt=P_resist+M_dot_cons™c_p™(T_mains-T}-UA™T-T_ext)
T_old=tablevalue(Table 1;row_param-1.#T) “recovers previous T"
P_resist_old=tablevalue(Table 1';row_param-1.#P_resist} "recovers previous P"

P_resist=RESIST(T_old;P_resist_old)

row_lookup=trunc(time/3600}+1 "counts row number in lookup table”
M_dot_cons=lookup(Lookup 1%row_lookup;'consumption’)/3600 "water flow rate in kg/s"

Energy_cons=Energy_cons_old+P_resist'DELTAt/1000/3600 "in kWWh"
Energy_cons_old=tablevalue(Table 1 row_param-1#Energy_cons)

Caps Lock: Off | 51 C kPa k) mass deg | War

Figure 3.4.3 — Equations Window for the water heater example.
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In the Equations Window T corresponds to Tt+A¢ in equation (3.4.2). The previous value T? is
designated as T _old, or T,,,;. The time rows in the Parametric Table are identified by a counter
(“row_param”), starting with the first row with initial values. The function TABLEVALUE
recovers the previous temperatures (T* or T_old) by searching them in the previous row
(row_param -1).

Note that the resistance power at a given time (P_resist) is calculated using the previous values
of power (P_resist_old) and temperature (T _old); the previous value of P is needed to define
the state of the resistance between the on-off values, when the resistance keeps the previous
value; but according to the implicit method chosen, P_resist should be calculated with T instead
of T_old; however, in this problem, using T would lead to numerical instability (no convergence
of the solution); this is due to the on-off situation, and introduces an explicit method influence
on the integration of equation (3.4.2).

The daily energy consumption is calculated by accumulating the resistance power over time,
using the variable Energy_cons.

Figure 3.4.4 shows a few of the initial and final Parametric Table rows. The numerical
simulation was extended to a period of 24 hours, or 86440 s, which corresponds to 1441 rows
with At=60 s. The calculations (Calculate — Solve Table) are started in Run number 2, as the
first Run/line is used to impose the initial water temperature. However, this temperature is not
directly known. Therefore, we assumed that the same daily cycle is repeated every day; this
way, the initial temperature will be equal to the temperature at the end of the day. As the
simulation was run for 24 hours only, this involved an iterative use of the model, starting with
an initial temperature value between 50 and 55°C (and P,sjst = 0), and changing it to the final
temperature value (24 h), until a close match between the 2 values was obtained; only 2 or 3
iterations were needed to reach the value of 53.7°C in Figure 3.4.4. Note that, to obtain the
solution, it was not necessary to alter the default guess values of all variables (taken as 1), which
are only used in Run 2, as the solution from the previous Run is used as guess for the next Run.

Figure 3.4.5 graphically presents the temperature results of the Parametric Table. The water
temperature is kept between 50 and 55°C most of the time. There is however a morning period
(between 7 and 8.7 hours), with the highest water consumption rate, when the resistance power
is not enough to maintain the water above 50°C. During this period, the water temperature
reaches a minimum of 43.5°C. We may note that in short periods the temperature exceeds 55°C;
this is due to the delay in the model response to the resistance switch-off; the effect of the
switch-off is only noticed after the end of the integration step (At) — the resistance is switched-
on until the end of the integration step. We could reduce the step in those moments, but the
error associated with energy quantities is very small. The calculated daily energy consumption
is equal to 9.2 kwh.

Figure 3.4.6 presents the resistance operation and the water consumption rate during the daily
cycle.

Figure 3.4.7 presents a comparison between the previous temperature evolution (At=60 s) and
the evolution when a time step of 300 s is used. The previously noted resistance switch-off
model delay is responsible for the most noticeable differences. They are however small, and
the calculated daily energy consumption does not differ much: 9.17 kWh for a At=300 s,
compared to 9.20 kWh for a At=60 s.

38



Heat Transfer: numerical modelling with EES applications

5 Parametric Table EI@
Table 1 |
et ™= ™= [ha B ™= [ ™8 ~
5 .1[>::1 time hour T Presist Meons Energy sns
[s] [°C] W] [kgis] [kKWh]
Run 1 0 53,7 0 0
Run 2 60 001667 53,69 0 0 0
“Run3 | 120 003333 53,69 0 0 0
Run 4 180 0.05 53,68 0 0 0
Run 5 240 0.06667 53,67 0 0 0
“Run6 | 300 008333 53,66 0 0 0
Run 7 360 0.1 53,66 0 0 0
Run 8 420 0.1167 53,65 0 0 0
“Rung | 480 01333 53,64 0 0 0
Run 10 540 0.15 53,63 0 0 0
Run 11 600 0.1667 53,63 0 0 0
“Run 12| 660 0,1833 53,62 0 0 0
Run 13 720 0.2 53,61 0 0 0
Run 14 780 0.2167 516 0 0 0
“Run 15 | 840 0,2333 536 0 0 0
Run 16 900 0.25 53,59 0 0 0
Run 17 960 0,2667 53,58 0 0 0
“Run 18 | 1020 0,2833 53,58 0 0 0
Run 19 1080 0.3 53,57 0 0 [
Run 1423 85320 237 53,91 0 0 9.2
Run 1424 85380 2372 53.9 0 0 9.2
Run 1425 85440 2373 53,89 0 0 9.2
Run 1426 85500 2375 53,69 0 0 9.2
Run 1427 85660 2377 53,88 0 0 9.2
Run 1428 85620 2378 53,67 0 0 9.2
Run 1429 85680 218 53,86 0 0 9.2
" Run 1430 | 85740 2382 53,86 0 0 9.2
Run 1431 85600 23.83 53,85 0 0 9.2
Run 1432 85860 2385 53,84 0 0 9.2
Run 1433 85920 2387 53,83 0 0 9.2
Run 1434 85980 2388 53,83 0 0 9.2
Run 1435 86040 23.9 53,62 0 0 9.2
Run 1436 86100 23.92 53,81 0 0 9.2
Run 1437 86160 23.93 53.8 0 0 9.2
Run 1438 86220 23.95 53,8 0 0 9.2
Run 1439 86280 23.97 53,79 0 0 9.2
Run 1440 86340 23.98 53,78 0 0 9.2
Run 1441 86400 24 53,77 0 0] 927,

Figure 3.4.4 — Parametric Table with results for the water heater example.
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Figure 3.4.5 — Evolution of the water temperature with on-off control.
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Figure 3.4.6 — Evolution of resistance power (on-off control) and water consumption rate.
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Figure 3.4.7 — Comparison of temperature profiles and daily energy values with 2 different time steps.

In order to limit the minimum water temperature, during the higher consumption period, it is
possible to increase the resistance power. Figure 3.4.8 shows the water temperature profile with
a 3000 W resistance. The minimum temperature increases to 49.4°C (an increase of almost 6°C),
but with an increase in daily energy consumption to 9.65 kWh.

As an alternative to the on-off control, we also analyse the effect of using a proportional control
between 50 and 55°C. In that case, the EES Function RESIST of Figure 3.4.3 will be only a
function of temperature, and should be adapted. In the equations the resistance is defined with
P.esist = RESIST(T). And in this case, there is no need to use T_old, as there is no convergence
instability, allowing a fully implicit formulation of the solution. Figure 3.4.9 shows the
Equations Window for the proportional control case.

Figures 3.4.10 and 3.4.11 show the graphical results with proportional control, and a maximum
power of 2000 W. The minimum water temperature is now 44.8°C (1.3°C higher), and in other
consumption periods it is always higher than with the on-off control.
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Figure 3.4.8 — Evolution of water temperature and daily energy consumption with Pegis: = 3000 W.
[=] Equations Window =N

FUNCTION RESIST(T}
P_max=2000
T_max=58
T_min=50
IF T>=T_max THEN
RESIST=0
ELSE
IF T==T_min THEN RESIST=P_max ELSE RESIST=P_max*(T_max-T)/(T_max-T_min)
ENDIF
END

V=100/1000 "m3"

DELTAt=60*1 "s"

rtho=Density(Water; T=50; p=100)
c_p=Cp(Water. T=50; p=100)"1000 "em J/kg/*c"
T ext=20

T_mains=15

UA=15

hour=time/3600 "time defined in Parametric Table"
row_param="1+time/DELTAt “counts row number in parametric table”

tho*Vec_p*(T-T_old/DELTAt=P_resist+M_dot_cons*c_p*(T_mains-T)-UA*(T-T_ext)

T_old=tablevalue(Table 1'row_param-1:#T) “recovers previous T'|
P_resist=RESIST(T)

row_lookup=trunc(time/3600)+1 "counts row number in lookup table”
M_dot_cons=lookup{Lookup 1" row_lookup;'consumption’)/3600 "water flow rate in kg/s"

Energy_cons=Energy_cons_old+P_resist"DELTAL/1000/3600 “in kWh"
Energy_cons_old=tablevalue{Table 1:row_param-1:#Energy_cons)

Figure 3.4.9 — Equations Window for the water heater with proportional control.
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Figure 3.4.10 — Evolution of the water temperature with proportional control.
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Figure 3.4.11 — Evolution of resistance power (proportional control) and water consumption rate.

With proportional control the resistance works most of the time at less than 1000 W. The daily
energy consumption is a bit higher at 9.48 kWh (compared to 9.2 kWh with on-off).

3.5 Domestic hot water solar system

solar collectors
Vi

consumption (I/hour)

3

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

t (hour)

mains

Figure 3.5.1 — Domestic hot water solar system and daily water consumption pattern.

Figure 3.5.1 represents a system that provides domestic hot water, using solar thermal collectors
and a storage tank. Water is circulated in the collectors when there is an increase in the water
temperature — collector outlet temperature higher than tank temperature. This is achieved with
the differential controller that switches on or off the pump.

Consider the following system characteristics:

= solar collector area: 4 m?; collector water flow rate: 0.08 kg/s (when pump switched on);

= storage tank: volume — 300 [; heat loss coefficient — 1.8 W/°C; outside temperature — 20°C;
= inlet cold water temperature (from the mains): 15°C.

The collector thermal efficiency (useful heat divided by total incident solar radiation) depends
on the collector inlet temperature, outside ambient air temperature, and incident solar radiation:

Neot = 0.8 =5 (Tcol,in - Tamb)/lsol (3.5.1)
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Assuming a global tank model, and no water heating element besides the solar collectors,
simulate the system during one day of March, with a total water consumption of 200 litres/day,
according to the graph in Figure 3.5.1, and with the following climatic data:

hour 1 2 3 4 5 6 7 8 9 [ 10 [ 11 12
Tamb (°C) 107 | 105 [ 104 [ 102 [ 102 [ 100 | 99 [ 103 | 114 [ 125 [ 134 | 141
Lsor (W/m?) 0 0 0 0 0 0 0 0o | 40 | 168 | 319 | 436
hour 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24/0
Tamn (°C) 147 | 152 [ 152 [ 153 [ 147 [ 140 | 128 | 122 | 127 [ 1123 | 111 | 108

Lo (W/m?) 564 | 677 | 556 | 409 | 351 | 246 | 148 | 14 | © 0 0 0

Next, assume that the storage tank also provides auxiliary energy through an electrical
resistance, with a maximum power of 1500 W and a proportional control (proportional band
between 50°C — maximum power — and 55°C — zero power). Obtain the temperature evolution
and the daily energy consumption, during the same day.

Finally, assume that auxiliary energy is provided in a separate (smaller) tank, placed after the
larger storage tank, with a capacity of 50 litres and a heat loss coefficient of 0.6 W/°C, using an
identical electrical resistance and control. Perform the new simulation and compare its results
with the previous ones.

The model will be based on the calculation of the tank water temperature (T), considered to be
uniform. The variation of water energy is related to all energy inputs (water inlet from mains
and water inlet from the collector circuit) and outputs (water outlet for consumption, heat losses
to the outside and water outlet to the collector circuit (collector inlet):

ar

Mcp dt = Mconscp (Tmains - T) + Mcolcp (Tcol,out - T) - (UA)tank(T - Text) (35.2)

M., is not constant, and the collector input only exists if there is heat gain in the collectors
(Tcor0ut > T). When this happens, T, o, Mmay be related to T and to the climatic data through
the collector efficiency — equation (3.5.1). We may write

NeotlsorAcor = Mcolcp(Tcol,out - T) (3.5.3)
or
0.8 Iso1Acor — S(T - Tamb)Acol = Mcolcp (Tcol,out - T) (35.4)

Equation (3.5.4) expresses a steady-state collector balance, valid for all instants, as the collector
thermal inertia is negligible (short thermal response time). Then, this algebraic equation,
together with the differential equation (3.5.2), define the values of T and T, ,,¢. Due to the
changes in M,,,,; and M,,; a numerical solution is required. Again, using the implicit method
of integration, the algebric/discretised equations to solve are:

TtHAL_pt 1 . _— A
T L g8y rauns = TE¥0) + MEgf (TES M — T2 =
_(UA)tank(THAt - Text)] (3.5.5)
and
0.8 I5g* Acor = 5(TTH — Ter VAcor = Mgl cp(Tiooue — THHY) (3.5.6)
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Replacing (3.5.6) in (3.5.5) a single equation may be obtained:

Tt+At_Tt

1 [, +
At Mo | MEERE G (Tmains — TEH0) + [0.8 1A = 5(T448 = TEA] Aoy —

_(UA)tank (THM - Text)] (3-5-7)

However, only positive values of the efficiency must be considered, as in other situations (e.g.
at night) the collector circuit pump is stopped. This was noted in equation (3.5.7) withthe [ ]*
sign. Therefore, the pump operation needs to be defined in a function. The model also needs to
define MEFAL. The water consumption flow rate will be defined in a Lookup Table (Lookup 1),
translating the graph of Figure 3.5.1. The hourly values of ambient temperature and solar
radiation, will also be included in the Lookup Table, and then used to calculate the values for a
given time. Figure 3.5.2 shows the Lookup Table.

Lookup Table [= =] =)

Lookup 1 1

< ™
Paste hour Ty
| =
Row 1
“Row2 |
Row 3
Row 4
Row §
Row 6
Row 7
Row 8 99
Row 9 10,3 0
Row 10 9 14 40
Row 11 10 125 168
Row 12 1 134 319
Row 13 12 14,1 436
Row 14 13 147 564
Row 15 14 16,2 677
Row 16 15 1582 556
Row 17 16 153 409
Row 18 17 147 351
Row 19 18 14 246
Row 20 19 128 148
Row 21 20 122 14
Row 22 2 17 0
Row 23 22 13
Row 24 23 11 0
Row 25 24 10,8 0

4 ]
consumption

[I/hour]

™= [
lsol

[Wim2]

108
10,7
105
104
102
102

10
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Figure 3.5.2 — Lookup Table for the hot water solar system example.

The EES calculation procedure will be developed with a Parametric Table (Table 1) where the
different time values are defined, step after step, or Run after Run, during 24 hours. Starting
with an initial value of the water temperature, the following values are obtained. Figure 3.5.3
presents the Equations Window, with the definition of equations (3.5.5) and (3.5.6), and the
pump control function (PUMP), plus other input values. The control function defines a pump
factor (fpump, €qual to 0 or 1) that, multiplied by the collector flow rate, takes into account the
pump state in the tank balance. The time step was imposed at 60 s (1 minute).

In the Equations Window, T and other variables correspond to values at t + At in the previous
equations. The previous value T* is designated as T_old, or T,,;. The time rows in the
Parametric Table are identified by a counter (“line”), starting with the first row with initial
values. The function TABLEVALUE recovers the previous temperature (Tt or T_old) by
searching in the previous row (line -1).

The values of consumption flow rate, ambient temperature and solar radiation, for a given time,
were calculated from the Lookup Table using an interpolation function (Interpolatel — a first
degree interpolation).
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Equations Window E@
-
"solar DHW system with storage”

FUNCTION PUMP(T_col_in;T_col_out)
IF T_col_out>T_col_in THEN
PUMP=1
ELSE
PUMP=0
EMNDIF
END

V=300/1000 "m3, storage tank”
DELTAt=60"1 "s"

rho=Density(Water; T=50:p=100)
c_p=Cp(Water; T=50;p=100)*1000 "in J/kgK"
T_ext=20

T_mains=15

UA=18

eta_0 _col=0,8
FU_col=5

A _col=4
M_dot_col=0,080 "kg/s"

hour=time/3600
line=1+time/DELTAt

T_old=tablevalue{Table 1"line-1#T) "recovers previous T"

T_amb=Interpolate1(Lookup 1% T_amb’ hourhour=time/3600)

|_sol=Interpolate 1{Lookup 171_sol’; hour:hour=time/3600)

M_dot_cons=Interpolate1{Lookup 1';'consumption’;'hour’;hour=truncitime/3600))/3600
|_sol*A_col*eta_0_col-FU_col*A_col*(T-T_amb)=M_dot_col*c_p*(T_col_out-T)
rho*V*c_p*(T-T_old)/DELTAt=M_dot_cons*c_p*(T_mains-T)+M_dot_col*f_pump*c_p*(T_col_out-T}-UA*(T-T_ext)

f_pump=PUMP(T:T_col_out)

|
EU |Line:36 Char: 1 ‘Wrap: On | Insert Caps Lock: Off | SICkPaklmassdeg | Wamings: On | Unit Chke On  Complex: Off Syntax Highlight:Off

Figure 3.5.3 — Equations Window for the hot water solar system example.
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Figure 3.5.4 — Evolution of storage and collector temperatures for the hot water solar system example.

To find the initial water temperature (Run 1 of the Parametric Table) it was assumed that the
same daily cycle is repeated every day; this way, the initial temperature will be equal to the
temperature at the end of the day. As the simulation was run for 24 hours only, this involved an
iterative use of the model, starting with an initial temperature value, and changing it to the final
temperature value (24 h), until a close match between the 2 values was obtained; a value of
43.4°C was obtained.

Figure 3.5.4 presents the temperature results. The minimum water temperature is 34.5°C, and
the maximum is 49.5°C. Note that the pump circulates water in the collectors between 9.8 and
18.2 (during 8.4 hours). The maximum water temperature increase in the solar collectors is
equal to 4.9°C at 14:00, when the solar radiation is higher.
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If higher water temperatures are needed, then auxiliary heating needs to be used. The first option
to analyse is to use an electrical resistance in the storage tank, with a maximum power of 1500
W and a proportional control between 50 and 55°C. The corresponding model needs to include
the resistance input, which depends on water temperature. The discretised equations become:

Tt+At Tt A ) . s
[Pﬁe*sét + MEGn ey (Tnains = THHA) + MEgE p (Tooue — THHAY)
_(UA)tank(THAt - Text)] (3.5.8)

and
t+At t+At _ t+At t+At t+At t+At
0.8 Isol Acol - 5(T * amb )Acol col Cp( col,out - Tt ) (3.5.9)

Figure 3.5.5 presents the Equations Window to solve the model. As in the example of section
3.4, the resistance input is calculated with a Function (RESIST), depending on the water
temperature. Besides that, a new variable was introduced to calculate the daily energy
consumption, accumulating the resistance power over time: variable Energy_cons.

Equations Window o e ==
-
Ianlar DHW system with integrated storage and aux heater with proportional control”

FUNCTION PUMP(T _col_in;T_col_out)
IF T_col_out>T _cal_in THEN
PUMP=1

END

FUNCTION RESIST(T)
P_max=1500
T_max=55
T_min=50
IF T>=T_max THEN
RESIST=0
ELSE
IF T<=T_min THEN RESIST=P_max ELSE RESIST=P_max*(T_max-T)/(T_max-T_min)
ENDIF
END
V=300/1000 "m3, storage tank”
DELTAt=60"1 "s"
rho=Density(Water: T=50:p=100)
c_p=Cp(Water; T=50;p=100)*1000 "in J/kgK"
T ext=20
T_mains=15
UA=18

V_aux=50/1000 "m3, auxiliary tank"
UA_aux=0.6

eta_0_col=0.8

FU_col=5

A_col=4

M_dot_col=0,080 "kg/s"

hour=time/3600
line=1+time/DELTAt

T_old=tablevalue(Table 1:line-1:#T) “"recovers previous T"
T_amb=Interpolate1(Lookup 1:T_amb’’hour hour=time/3600)
|_sol=Interpolate1{Lookup 1%1_sol’ hour;hour=time/3600}
M_dot_cons=Interpolate1(Lookup 1%"consumption’;hour:hour=trunc(time/3600))/3600

|_sol*A_col*eta_0_col-FU_col*A_col*(T-T_amb)=M_dot_col*c_p*(T_col_out-T)

tho™V*c_p*(T-T_oldDELTAt=P_resist+M_dot_cons"c_p™(T_mains-T)+M_dot_col*f_pump~c_p"(T_col_out-T}-UAT-T_ext)
f_pump=PUMP(T:T_col_out)
P_resist=RESIST(T)

Energy_cons=Enargy_cons_old+P_resist"DELTAt/1000/3600 "sm kWh"
Energy_cons_old=tablevalue(Table 1"line-1;#Energy_cons)

EU [Line: 29 Char2 Wrap: On | Insert Caps Lock Off |51 CkPakimassdeg | Wamnings: On | Unit Chic On  Complex: Off | Syntax Highlight:Off

Figure 3.5.5 — Equations Window for the hot water solar system with integrated storage and electrical heating.

The graphical results are shown in Figures 3.5.6 and 3.5.7. The temperature levels are higher
than in Figure 3.5.4: the minimum storage temperature is now 48.6°C and the maximum is now
60.5°C, due to the resistance input. But as the collector inlet temperature (storage temperature)
is higher, the collectors operate with poorer efficiency and less time. The daily electrical energy
consumption is equal to 5.753 kWh, while the solar collectors provide 4.617 kWh to the storage
(45% of the total). The collected solar energy may be calculated by adding another
accumulation variable in the Equations Window — Energy_sol (similar to Energy_cons):

EnergYsol = E:nergYSOI,old + fpump * Mcol *Cp * (Tcol,out - T) * At (3.5.10)
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Figure 3.5.6 — Evolution of storage and collector temperatures for the hot water solar system with integrated storage
and electrical heating.
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Figure 3.5.7 — Evolution of resistance power (proportional control) and water consumption rate for the hot water
solar system with integrated storage and electrical heating.

The second alternative to analyse is the use of a separate auxiliary energy tank, with a smaller
volume (50 litres), where the electrical resistance is placed; as before, the resistance has a
maximum power of 1500 W and a proportional control between 50 and 55°C. Figure 3.5.8
represents this system configuration.

: » —— consumption
—1]
collectors storage
tan auxiliary
@ tank

pump . T
mains

Figure 3.5.8 — Schematic representation of the hot water solar system with separate storage and auxiliary heating.
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The Equations Window for this system configuration is shown in Figure 3.5.9. By comparison
with Figure 3.5.5 (integrated storage and heating), another set of equations was added to include
the auxiliary tank and calculate the variables T aux and T_aux_old. The resistance input
(P_resist) was removed from the storage tank and included in the smaller tank. Figures 3.5.10
and 3.5.11 show the EES results in graphical form.

Equations Window E@
—

"solar DHW system with storage and separate tank with aux heater with proportional control”

FUNCTION PUMP(T_col_in'T_cal_out)
IF T_col_out>T_col_jn THEN
PUMP=1

FUNCTION RESIST(T)
P_max=1500
T_max=55
T_min=50
IF T>=T_max THEN
RESIST=0
ELSE
IF T<=T_min THEN RESIST=P_max ELSE RESIST=P_max"(T_max-T)/(T_max-T_min)
ENDIF
END

V=300/1000 "m3, storage tank"
DELTAt=60"1 "s"

rho=Density(Water, T=50:p=100}
¢_p=Cp[Water: T=50:p=100)"1000 "in J/kgK"
T ext=20

T_mains=15&

UA=1.8

V_aux=50/1000 "m3, auxiliary tank"
UA_aux=0.6

eta_0_col=0.8
FU_col=5|

A_col=4
M_dot_col=0,080 "kg/s"

hour=time/3600
ling="1+time/DELTAt

T_old=tablevalue(Table 1:line-1:#T) "recovers previous T"
T_amb=Interpolate1(Lookup 1:T_amb’’hour:hour=time/3600)
|_sol=Interpolate1(Lookup 171_sol " hour’:hour=time/3600)

M_dot_c: Interpolate1(Lookup 1%'co ption”. hour hour=trunc(time/3600))/3600

I_sol*A_col*eta_0_col-FU_col*A_col*(T-T_amb)=M_dot_col*c_p*(T_col_out-T)

tho™V*c_p*(T-T_old)DELTAt=M_dot_cons*c_p*(T_mains-T)+M_dot_col*f_pump®c_p*(T_col_out-T}-UA*(T-T_ext)
f_pump=PUMP(T.T_col_out)
P_resist=RESIST(T_aux}

T_aux_old=tablevalue{Table 1:line-1:#T_aux) "recovers pravious T_aux”
tho"V_aux"c_p*(T_aux-T_aux_old)/DELTAI=M dot_cans™c_p"(T-T_aux)+P_resist-UA_aux"(T_aux-T_ext)

Energy_cons=Energy_cons_ant+P_resist"DELTAt/1000/3600 "em kWh"
Energy_cons_ant=tablevalue(Table 1:line-1.#Energy_cons)

EU [Line: 21 Char2 Wrap: On | Insert Caps Lock: Off | S| C kPakimassdeg | Warnings: On | Unit Chk On  Complex: Off | Syntax Highlight:Off

Figure 3.5.9 — Equations Window for the hot water solar system with separate storage and auxiliary heating.
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Figure 3.5.10 — Evolution of storage, consumption and collector temperatures for the hot water solar system with
separate storage and auxiliary heating.
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Figure 3.5.11 — Evolution of resistance power (proportional control) and water consumption rate for the hot water
solar system with separate storage and auxiliary heating.

With separate storage and auxiliary heating, the storage and collector outlet temperatures have
exactly the same values as in Figure 3.5.4, as no electrical heating is provided to the storage.
Therefore, the inlet collector temperatures are kept at the minimum level, with higher collector
efficiencies. The auxiliary tank temperature never goes below 51°C, even when the water
consumption is higher, and in other water consumption periods it is always above 53.5°C.

In this configuration the daily electrical energy consumption is equal to 3.424 kWh, with a
reduction of 40% compared to the integrated storage/heating configuration. The solar collectors
provide now 6.883 kWh to the storage (67% of the total).

3.6 Swimming pool solar heating

-(I)- & HX

@

Figure 3.6.1 — Swimming pool solar heating system.

An outdoor swimming pool is heated with a solar thermal system, as shown in the figure. There
is a heat exchanger (HX) between the collector circuit and the pool circuit (with water
circulating in both). We would like to evaluate the time required to heat the pool water from
the mains temperature of 16°C to the required operating temperature of 28°C. The pool is filled
with water on the 1st of May, and the hourly climatic data are available in an Excel file (solar
radiation on horizontal and collector surfaces, ambient air temperature and humidity, and wind
speed). The pool water has no significant shading and its surface is covered during the night
period, from 18:00 to 8:00 (during this period all pool thermal losses may be neglected).
Consider the pool at uniform temperature.
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The solar collector area is equal to 125 m?, equal to 50% of the pool area (250 m?). The pool
average depth is equal to 2 m. The collectors have the following efficiency characteristic curve:

Neot = 0.72 =5 (Tcol,in - Tamb)/lsol,col (3.6.1)

The collector circuit pump works whenever there is heat gain. The pool circuit pump works
when there is collector circulation, and the fluids and flow rates of both circuits are the same
(0.020 kg/s/m?c in the collector circuit). Under these conditions the heat exchanger efficiency
is equal to 0.7.

Build a numerical model for the pool water temperature evolution, and solve it using the EES
software.

Tmnb ’ ()bamb Wwind» Isol,p
o]

[ Tm.’,mn‘ 'i-\ Tp,m
Tumb } § T
o
"sal,wl / § Tp
T @ t
Tm{.in Tp

Figure 3.6.2 — Temperatures and climatic variables for the swimming pool model.

The main model equation to calculate the pool water temperature (T}) is related to the time
variation of water energy, which depends on all energy inputs and outputs. We will assume that,
although some of the water evaporates to the ambient air, its mass is compensated by
introducing new water; therefore, the pool water mass is constant. But the effect of this new
water on the energy balance is neglected. When the pumps of Figure 3.6.2 are in operation, the
pool receives water at a higher temperature (T, ;,). On the other hand, if the water surface is
not covered, it absorbs solar radiation and looses heat by convection, radiation and evaporation.
Other pool heat losses or gains are neglected. The following equation expresses the energy
balance:

Mpcp,p % = [Mpcp,p (Tp,in - Tp)]+ + [Qsol,abs - (Qevap + Qconv t Qrad)]++ (36.2)
The [ ]* notation means that this term is considered only when positive, that is, only when
there is heat gain in the solar collectors (T¢o;our > Tcorin iMplies that Ty, ;, > T,). And the
[ 17 notation means that the term only applies if the pool surface is not covered (otherwise
it is considered as zero).

The absorbed solar radiation depends on the absorptance coefficient of water and incident solar
radiation on horizontal surfaces:

Qsot,abs = ap Isol,pAp (3.6.3)

The evaporation losses depend on the evaporated mass, which depends on the mass transfer
coefficient, difference in water vapour concentration and enthalpy of vaporisation:

Qevap = hm [pv,sat (Tp) - ¢ambpv,sat (Tamb)] Ahlv Ap (3-6-4)
The convective heat losses depend on the convective heat transfer coefficient:
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Qconv =h (Tp - Tamb) Ap (3.6.5)

The heat and mass transfer coefficients may be related through the Lewis relationship —
equation (3.3.2).

For a surface exposed to outside air, the coefficient may be related to the wind speed through a
simple linear relationship for a varying flow over a rough flat surface:

h =6.19 + 4.29 Vwind (3.6.6)

One must note that the wind speed available in climatic files corresponds to values measured at
a given height above the ground level (usually 10 m). The wind speed to be used in equation
(3.6.6) should be the speed at ground level. It is recommended to divide the standard measured
values by a factor between 5 and 10, depending on the wind protection at the pool site.

The radiative losses, assuming that all outside surfaces and sky are at the same temperature
(equal to Typmp)

Qrad =& U(Tp4 - Tamb4) Ap (3.6.7)

The relationship between T,y o, and T, i, depends on collector efficiency and climatic data.
Using equation (3.6.1) we may write (assuming steady-state in the collectors):

0.72 Isol,colAcol - S(Tcol,in - Tamb)Acol = Mcolcp,c(Tcol,out - Tcol,in) (36.8)

The relationship between T, ;, and the other relevant temperatures depends on the heat
exchanger efficiency:

Mpcp.p (Tp,in - Tp)/[Cmin(Tcol,out - Tp)] = 0.7 (3.6.9)

where C,,;,, 1S the minimum flow heat capacity (Mcp) of the 2 streams; in this example the 2
capacities will be considered as equal (same fluid and same flow rate).

A final equation states the equality of the heat received by the colder stream and the heat lost
by the warmer stream in the heat exchanger:

Mpcp,p (Tp,in - Tp) = Mcolcp,col(Tcol,out - Tcol,in) (3.6.10)

The model main equations are then equations (3.6.2), (3.6.8), (3.6.9) and (3.6.10), assisted by
equations (3.6.3) to (3.6.7). Equations (3.6.8-10) are algebraic equations, valid for any instant
t + At. Equation (3.6.2) must be numerically integrated; with the implicit method it becomes:

T£+At_

Tt . t+At,+
+—t= [Mpcp,p (Tp,in - Tp)] +

Mycpp 1,

: . . . t+At++
+ [Qsol,abs - (Qevap + Qconv + Qrad)] (3-6-11)

To implement the model equations in EES, we defined the pump operation ([ ]*) and cover
placement ([ ]**) conditions, using FUNCTIONS, and 2 multiplying factors that are either 0
or 11 foump and feoper. The values of the climatic variables were defined in a Lookup Table
(“Lookup 17) and used with the equations to sequentially calculate the temperatures, step after
step. The Parametric Table (“Table 1”°) will start with row/run number 1, with the initial pool
water temperature of 16°C, and continue with time steps that were defined equal to 300 s (5
min). Figure 3.6.3 shows only the first rows of the Lookup Table, since the hourly data for the
full month of May were introduced (for an average year).
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[T Lookup Table

Clima I
<H ™= ™= ™« ™= ™]s ™ A~
hour Rad o orizontal Radgg o Tamb $Pamb Viwing
[Tsv] [Wim2] [Wim2] [°C] [%] [mis]

Row 1 1 0 0 156 52 28
Row 2 2 0 0 172 4 238
Row 3 3 0 0 18 37 22
“Rowd | 4 0 0 18,2 3 22
Row 5 5 0 0 148 45 22
“Row6 | 6 44 48 144 50 11
TRow7 | 7 203 189 162 4 33
“Rows | 8 425 405 16 46 36
“Row9 | 9 606 612 17 39 44
Row 10 10 744 775 18 4 44
Row 11 1" 869 922 196 4 44
Row 12 12 919 980 216 42 39
Row 13 13 917 975 23 3 5
“Row1d | 1 853 893 24 29 22
“Row 15 | 15 742 754 244 25 22
“Row 16| 16 583 557 2 27 33
“Row 17 | 17 392 364 256 28 17
“Row 18 | 18 189 248 254 26 28
Row 19 19 3 0 238 3 33
Row 20 20 0 0 214 3 56
Row 21 2 0 0 194 42 5
“Row22 | 22 0 0 18,6 40 6.1
“TRow23 | 23 0 0 1738 42 5
“Row2d | 2 0 0 164 46 33,

Figure 3.6.3 — Lookup Table with climatic variables for the swimming pool example.

Equations Window [E=8 Eo8 =)
=

[FUNCTION PUMP(T_col_in:T_col_out) ”
IF T_col_out=T_col_in THEN
PUMP=1

FUNCTION COVER (hour)
schedule=(hour/24-TRUNC(hour/24))"24
IF {(schedule<8) OR (schedule>18) THEN
COVER=0 "cover ON"
ELSE
COVER=1 "cover OFF"
ENDIF
END

A_p =250 [m2]"Pool surface area”
V_p=A_p"2 [m3] "Pool volume"
A_col=125 [m2] "Collector area”

c| Cp(Water.T=20,P=100)*1000 [J/kgK]

P_|
rho_p=Density(Water,T=20;P=100)
.9

alpha_p:
epsilon_p=0
FRtaualfa_col=0,72 "collector efficiency parameter”
FRU_col=5 "collactor efficiency loss factor”
epsilon_HX=0,7 "HX efficiency”
M_dot_col=0,027A_col

M_dot_p=M_dot_col

cp_col=cp_p
C_min=MIN(M_dot_p“cp_p;M_dot_col"cp_col)

DELTAt =605 [s] "5 min”
hour=time/3600
line=1+time/DELTAt

“interpolation of climatic variables”
|_sol_p=Interpolate1(Clima’/Rad_sol_herizontal’;hour’;hour=hour)
I_sol_col=Interpolate1(Clima’;Rad_sal_col’ hour';hour=hour)

7 Interpolate1{Clima’;
phi_amb=Interpolate1(Clima’;phi_amb’'hour’ hour=hour)

v_wind=Interpolate 1(Clima’;v_wind' hour;hour=hour)/5 "air velocity at water surface level”

"pool balance; implicit method”
tho_p*V_p*cp_p“(T_p-T_p_oldyDELTAt=M_dot_p*cp_p*(T_p_in-T_p)*f_pump+(Q_dot_sol_abs-Q_dot_rad-Q_dot_conv-Q_dot_evap)*f_cover
T_p_old=TABLEVALUE(Table 1 line-1#T_p)

"solar collectors”

M_dot_col*cp_col*(T_col_out-T_col_in)=(FRtaualfa_col*_sol_col-FRU_col*(T_col_in-T_amb))"A_col

"HX balance”

M_dot_p“cp_p*(T_p_in-T_p}=epsilon_HX*C_min*(T_col_out-T_p)

M_dot_col*cp_col™T_col_out-T_col_in)=M_dot_p*cp_p*(T_p_in-T_p)

"pump operation”

f_pump=PUMP(T_caol_in.T_col_out)

“"cover utilisation factor: according to schedule in FUNCTION COVER"

f_cover= COVER (hour) )

"pool solar gains”

Q_dot_sol_abs=alpha_p*l_sol_p"A_p

“convection losses”

h_conv=6,19+4 29*_wind

Q_dot_conv=h_conv*A_p*(T_p-T_amb)

"radiation losses; T sky assumed = T amb”

Q_dot_rad=epsilon_p*sigma#"((T_p+273 15p4-(T_amb+273 15p4)'A_p

“"evaporation losses”

h_m=h_conv*2 82E-5/Conductivity(Air_ha:T=20:P=100)

rho_vs_Tp=HumRat(AirH20:T= 00)Volume(AirtH20:T=T_p:r=1:P=100}
rho_vs_Tamb=HumRat(AirH20 i =1.P=100)Molume(AirH20;T=T_amb;r=1,P=100}
Q_dot_evap=h_m*(tho_vs_Tp-rho_vs_Tamb*phi_amb/100)"enthalpy_vaporization(Water, T=T_p)*1000~A_p "in W"

EU [line46 Char43 |WrapiOn |Insert Caps Lock: Off | S CkPa k) massdeg | Wamnings: On | Unit Chic On  Complex: OFf | Syntax Highlight:Off

Figure 3.6.4 — Equations Window for the swimming pool example.
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The PUMP Function defines if the pump operates (fpymp = 1, When Teop oue > Teorin), @and is
similar to the one seen in example/section 3.5.

The COVER Function defines when the pool cover is placed (f;oper = 0, between 18:00 and
8:00). This will eliminate solar gains and heat losses in the pool surface in that period. Because
several days were simulated, a “schedule” variable was used to take into account the same
period every day.

Figure 3.6.5 presents results from a few rows/runs of “Table 1. In those rows different
combinations of f,ymp aNd feoper values occurred: pump not operating with cover on, followed
by pump operating with cover, and then followed by pump operating without cover. Note that
solar gains and evaporation losses that appear on “Table 1” when the cover is on, are calculated
but do not affect the pool balance, as they are multiplied by f.,per = 0.

] Parametric Table =N e =
Table 1 |
Sl = B : 5 5 ™ ™ a8 ™ ™ LR T, s LN
2 SD( time ‘ hour ‘ lsotp ‘ lsotcol ‘ Tamb ‘ famb ‘ Vuind ‘ s ‘ Teotin ‘ Testout ‘ Toin foump Teover Qsotabs ‘ Qevap
[s] [Wim2] [Wim2] [°C] [%] [mis] [*c] [*c] [*c] [*C] W] W]
Run 2088 626100 1739 58 67 715 14 69 0,7883 25,83 2573 2549 2559 0 0 13200 108359
Run 2089 626400 174 64 78 1.4 69 078 2583 2575 25,56 25,64 0 0 14400 107954
Run 2090 626700 1741 78.83 90.75 11.37 68.42 0.7667 2583 258 2572 2575 0 0 17737 107776
Run 2091 627000 74,2 93,67 1035 11.33 67.83 07533 26,83 26,84 26,87 26,85 1 0 21075 107591
Run 2092 627300 1743 108,5 16,3 13 67,25 0,74 25,83 25,89 26,02 2595 1 0 24413 107399
Run 2093 627600 1743 1233 129 1.27 66,67 0,7267 25,83 25,93 2617 26.07 1 0 27750 107202
Run 2094 627900 1744 138.2 141.8 11.23 66.08 0.7133 2583 2598 26,32 26.17 1 0 31088 106998
Run 2095 628200 1745 163 164, 1.2 65,5 0.7 26,83 26,02 2647 26.28 1 0 34425 106789
Run 2096 628500 1746 167,8 167,2 117 64,92 0,6867 26,83 26,07 26,62 26.38 1 0 37762 1065673
Run 2097 528800 174,7 182,7 180 113 64,33 06733 25,83 2611 2677 2649 1 0 41100 106352
Run 2098 629100 1748 197.5 192.8 1.1 63.75 0.66 2584 26,16 26,92 26.59 1 0 44438 106124
Run 2099 629400 1748 2123 205.5 11,07 63,17 06467 2584 26,21 27.07 267 1 0 47775 105891
Run 2100 629700 1749 2272 2183 11.03 62,58 06333 26,84 26,25 2722 26,81 1 0 51113 105661
Run 2101 630000 175 242 231 1 62 062 25,84 263 2737 26,91 1 0 54450 105406
Run 2102 630300 1751 2596 246.9 1112 61.67 0.6383 2584 26,36 27.58 27.06 1 0 58406 106285
Run 2103 630600 175.2 27172 262.8 11,23 61,33 0,6567 2584 2642 271,78 272 1 0 62363 107167
Run 2104 630900 176,3 2948 278.8 11.35 61 0,675 26,85 26,49 2798 27.34 1 0 66319 108050
Run 2105 631200 1753 3123 2047 1147 60,67 06933 25,85 26,55 2818 2748 1 0 70275 108935
Run 2106 631500 1754 3299 310.6 11.58 60.33 07117 2585 26,61 28,39 27.63 1 0 74231 109823
Run 2107 631800 1755 75 326.5 7 60 073 2585 26,67 28.59 21,77 1 0 78188 110712
Run 2108 632100 176,6 365.1 3424 11,82 59,67 0,7483 25,86 26,74 2879 27.91 1 0 82144 111604
Run 2109 532400 1757 3827 3583 11,93 59,33 0,7667 25,86 268 29 28,06 1 0 86100 112499
Run 2110 632700 175,8 4003 3743 12,05 59 0,785 25,86 26,86 29,2 232 1 0 90056 113396
Run 2111 633000 175.8 4178 390.2 1217 58.67 0.8033 2587 26,93 294 28.34 1 0 94012 114296
Run 2112 633300 176,9 4354 406,1 12,28 58.33 08217 25 87 26,99 29,61 2649 1 0 97969 115198
Run 2113 633600 176 453 422 124 58 0,84 25 87 27,05 298 26,62 1 1 101925 116024
Run 2114 533900 176,1 468, 4396 12,67 56,25 083 25,86 2711 30,03 2878 1 1 105413 116052
Run 2115 634200 176.2 484 457.2 12,93 545 0.82 2586 2718 30.26 28.94 1 1 108900 16116 |,

Figure 3.6.5 — Extract of the Parametric Table “Table 1” for the swimming pool example.
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Figure 3.6.6 — Evolution of pool water temperature for the swimming pool example.
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Figure 3.6.6 presents a graphical evolution of the pool water temperature during the first 25
days of May. Initially the increase in temperature is higher, as the water is colder, and steps may
be noticed in the curve, corresponding to daily increases in water temperature. At the end of
each day there is a slight decrease in water temperature. After 15 days the pool reaches a stable
value above 28°C (after a decrease), and even increases above 30°C during the last week.

The interpretation of the daily evolution is clearer if we look at the evolution during 2 days —
Figure 3.6.7 — where the collector inlet and outlet temperatures are also represented. At the start
of the sunlight period the collectors start collecting solar radiation, and with the increase in
incident solar radiation the pool water heats up. The temperature rise in the collectors achieves
a maximum of about 8°C. Then, at the end of the sunlight period, the collector contribution
reduces, and pool heat losses increase, which leads to the slight pool temperature reduction.
This reduction could be avoided (or minimised) if the pool cover was placed sooner than 18:00.
Figure 3.6.8 shows the schedule of cover and collector pump use. It would be beneficial to
better match the 2 schedules, removing and placing the cover at about the same time as the
pumps switch on and off (respectively).
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Figure 3.6.7 — Evolution of pool water and collector temperatures during two days.
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Figure 3.6.8 — Evolution of cover and pump factors during two days.
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Figure 3.6.9 shows the different pool heat losses (radiative, convective and evaporative),
compared with the solar radiation directly absorbed by the pool surface. Note that in certain
periods the direct absorption exceeds the sum of all losses, meaning that the pool water is then
heated, even without the collector contribution.

. 220 1
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[ ‘VV]200 feover
180 08
160
140
06
120 -
100 Qevap
04
80
60
. 0,2
40 Qconv .
20 \’\/ Qrad
\\\‘__/__ \\—V
0 0
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day 8 day 9

Figure 3.6.9 —Evolution of pool absorbed solar radiation and pool heat losses during two days.

It is also evident that evaporation losses represent the highest share of losses. To estimate the
total loss of liquid water we may add to the Equations Window an accumulating variable,
summing all the evaporation flowrates over time, when the cover is removed:

Mp,evap = Mp,evap,old + feover * Qevap/Ahlv * At (3.6.12)

Adding this variable to the Equations Window and Parametric Table, and defining My, evap old
as the previous run value (starting at zero), the result for the 25 simulated days is that 9.4% of
the initial 500 tons of water evaporate, and should be compensated by introducing fresh water.
The impact on the total energy balance is not very significant: water evaporation is compensated
by adding fresh water, at the mains temperature, which represents an energy input; however, its
enthalpy is much lower than the enthalpy of vaporisation, and therefore negligible.
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4 Distributed and combined modelling examples

This chapter presents several examples of numerical models applied to thermal systems, using
a distributed approach. In some cases a distributed model is used for some system components,
and a global model for other components, and thus a combination of the two is used. The models
are first discussed, and then EES is used as a tool to obtain the solutions and perform
parametric/sensitivity analyses. The EES equations/codes are also presented. Most of the
examples are related to dynamic situations, with temperatures and other properties varying
along time.

As remarked in chapter 2, in the UK/USA system the dot is used as a decimal point, while in
most European countries a decimal comma is used. In this book, the decimal comma is used,
and this affects the use/appearance of some instructions and functions, when compared with the
EES software manual: as a comma replaces the dot, the sign for semicolon (;) is used to replace
the comma.

4.1  Steady-state conduction, convection and radiation in a rod

20°C An horizontal steel rod (k=15 W/mK) with the
100°C dimensions shown in the picture has one extremity
e kept at 100°C. The rod surface transfers heat to the
surrounding air at 20°C by free convection, and
exchanges radiation with indoor surfaces, which are
kept at 20°C. The rod surface may be assumed as gray

Figure 4.1.1 — Rod and dimensions. and diffuse, with ao=¢=0.8.

20 o

Assuming the rod temperature only varies along its length, calculate the temperature with the
finite volume method with Ax=1 cm. Also calculate the dissipated heat.

Assuming the temperature variation along the rod radius is negligible, due to its small diameter
and good conductivity, the steady-state temperature distribution is only a function of the length
coordinate (x). The problem would have an analytical solution if the outside heat transfer
coefficient was constant along x. However, both free convection and thermal radiation lead to
a variable coefficient: the free convection coefficient depends on the temperature difference
between the rod and outside air, and radiation exchanges depend on temperatures to the power
of 4. Therefore, a numerical solution is needed to obtain T (x).
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iy ONedion

Conducton, .y

conduct\on,xﬂx{l

Figure 4.1.2 — Finite volume and its heat exchanges.

Using the finite volumes method, the equation for an internal volume takes into account all heat
transfer fluxes across its boundaries — see Figure 6.1.2. The energy balance is given by the
equation

Kk K
o As(Tica = T) = = As(Ty = Tiga) + hiPAX(T; = Teye) + €0 PAx(T;* = T2, )(811)

where Ay is the conduction (section) area and PAx the convection and radiation (surface) area
(P is the perimeter of the section, equal to 27R).

The above equation is repeated for all internal volumes, that is, for i = 2 until 20. The first and
last volumes have special conditions. For the first volume/node (i = 1) the temperature is
imposed at 100°C. In the last volume/node (i = 21) there is conduction with the previous
volume and also convection and radiation exchanged by the top circular surface. The equation
for this volume/node, with a length equal to Ax/2, is:

k A A
EAs(Tzo - T21) = hiP%(Tm - Text) +éeo P%(Tzﬁ - T:xt) +

+ heopAs(To1 — Texe) + €0 As(TH — Toe) (4.12)

When implementing the set of 21 equations to calculate the 21 temperatures, the Duplicate
instruction was used to repeat equation (4.1.1), from i =2 to 20. The EES heat transfer
correlation database was used to calculate the 21 values of h;, as a function of (T; — T,,;). For
that, an horizontal cylinder geometry exposed to quiet air was assumed, with varying surface
temperature, that is, neglecting the influence that neighbour boundary layers of the free
convection flows might have.

Figure 4.1.3 shows the Equation Windows that defines the problem conditions and set of
equations. Array variables were used for the x coordinate (x[i]), the temperature (T[i]), and the
convection coefficient (h[i]). For the convection coefficient on the top surface ( hy,y, at x=L)
a different correlation from the literature was used, [7], as the vertical disk geometry is not
available in the EES database. Figure 4.1.4 presents the Formatted Equations.

Other array variables used were Q.ony[il, Qrqqli]l and Q[i], to calculate the convective,
radiative, and total heat transfer rates of each volume. Then, using the SUM function, the total
heat transfer rates in all volumes were calculated (Qcony totars Qrad,totar @0 Qrotar)

Figure 4.1.5 presents the results in the Arrays Table, for the 21 nodes considered. Figure 4.1.6
presents the temperature distribution and heat transfer coefficients, while Figure 4.1.7 presents
the distribution of heat transfer rates. The temperature varies significantly from 100°C down to
32.58°C at the top. Note that the convective coefficient at the top circular surface is significantly
higher, even with a lower temperature. Concerning the heat rates, they follow the temperature
variation, with the lower values in the first volume/node due to its smaller size (Ax/2).
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Equations Window E@
=

"rod in steady-state witn surface free convection and radiation’
L=0.2

k=15

epsilon=0.8

D=0,02 "diameter 2 cm”

P=pi‘D
TI1]=100

N=21
DELTAx=L/(N-1)
X[1]=0

Duplicate i=1; N
Call fc_horizontal_cylinder(Air; T[i]; T_ext;100:D : h[i]; Nusselt[i]: Ra[i]}
End

Q_dot_comv[1]=h[1]"P*DELTA)/2*(T[1}-T_ext)
Q_dot_rad[1]=epsilon*sigma#"P*DELTAx/27((T[1]+273,15)*4-(T_ext+273,15)4)
Q_dot[1]=Q_dot_conv{1]+Q_dot_rad[1]

Duplicate i=2; N-1
X[i]=(i-1)"DELTAx
K/DELTAx™A_s*(T[i-11-T[i])=k/DELTAx*A_s*(T[i]-T[i+1]}+h[i] P*DELTAx*(T[i]-T_ext}+epsilon*sigma#*P*DELTAx*((T[i]+273 15)4-(T_ext+273,15)4)
Q_dot_conv[i]=h[i]*P*DELTAX*(T[i]-T_ext}
Q_dot_rad[i]=epsilon*sigma#*P*DELTAX((T[i]+273,15M-{T_ext+273,15)%4)
Q_dot[i]=Q_dot_conv[i]+Q_dot_rad[i]
End

X[N]=(N-1y'DELTAX
KWDELTAX"A_s*(T[N-1]-T[N])=(h[N]"P*DELTAx/2+h_top*A_s)*(T[N]-T_ext)+epsilon*sigma# (P*DELTAWZ+A_s)*((T[N]+273,15)"4-(T_ext+273,15)4)
Q_dot_conv[M]=(h[N]"P"DELTAx/2+h_top™A_s)*(T[M]-T_ext) "different h in parimeter and circular top surface”
Q_dot_rad[N]=epsilon*sigma#*(P*DELTAx/2+A_s)((T[N]+273 15)4-(T_ext+273,15)4)

Q_dot[N]=Q_dat_conv{N]+Q_dat_rad[N]

Q_dot_total=sum(Q_dot[i];i=1;N)
Q_dot_conv_total=sum({Q_dot_convi];
Q_dot_rad_total=sum(Q_dot_rad]i];
h_top=Musselt_top*k_air/D
k_air=conductivity(Air, T=20)
Nusselt_top=1,759"Ra[N]*0,15 “for the top (disk) Ra alko defined with D. therefore equal to the previous Ra; because of the Ra value, the guess for T[N] was set at 30"

EU [Line:22 Char:2 Wrap: On | Insert Caps Lock: Off |51 C kPa k) mass deg | Warnings: On | Unit Chic On  Complex: OFf | Syntax Highlight:On

Figure 4.1.3 — Equations Window for the rod heat transfer example.

Formatted Equations [l s

rod in steady-state witn surface free convection and radiation

L= 02
k= 15
t= 08

Tow = 20
A=z o’
= 4
P=32 D
T, = 100
No= 21
oo b
ToN-
X = 0
Call Teromoncaioyinger (AR 1 Ti; Toq; 100 D 5 ;) (for i=1to N)
a
Quans = Ny P S Ty = Tan)
o & " "
Qe = = - 5670E-08 [WMPK- P - Fe ((Ty + 27315 J* = (Toy + 27375 )°)
Qs = Qeervit* Quaa
o= [i- 1) (for i= 210 N-1)
K k 2 4 +
i (T - T = = A (Ti— Tua)+ hi- P - (Ti— Taq)* & 5670E-08 MWimKY- P - ax - ([T + 27315 )* = (Tee + 27315 ) (for i= 2t N-1)
= s Peax - (Ti— Toa) (for i= 2t N-T)

& BETOE-08 WmZKY - P - ax - [(T,+ 27315 )* — (T, + 27315 }*) (for i=2t0 N-T)

Qi = Oupa* Qugi flor 1= 210 N-1)
Xz o= (N - 1) &

K = N x " "
oA (T Tor ) = {nz. P N AS}— (Tos — Tew )+ = - 5670E-08 [WimKY) {F‘ i »\5] ((Tor + 273,45 J* = (Tog + 27315 11)
. ax
Qcoryz= |hat - P - 5=+ g A |- (Toy = Toq ) differentnin perimeter and circular top surface

; & " "
Quzzr = = 5670E-08 W™K |P T A ((Tz + 27315 ) = (Taq + 27315 1)
Az = Qe+ Q
N
Qe = 3 (G5 )
N
Qo= 3 Qe )
N
Qoo = T (Quy J
Kair
Ny = Nusselt, - =
ky = k(AR;T=20)
Nusselty, = 1759 - Ray*'® forthe top (disk) Ra also defined with D, therefore equal to the previous Ra because ofthe Ra value, the guess for Ty, was setat 30

Figure 4.1.4 — Formatted Equations Window for the rod heat transfer example.
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[H Arrays Table EI@

Main 1

<A 2 3 4 5 8 T . 8 .
Sﬂﬂ x\ ‘ h\ ‘ T\ NLISSe“l ‘ Ra\ ‘ QCU"V;\ ‘ Qrﬂd;l ‘ O| ‘
m] [Wim2K] °cl w w w]

] 0 5.461 100 6,026 36777 02126 01711 0.3837
™| 0,01 8,221 90,1 5931 34511 0.3621 0,2858 0.6479
@™ | 0,02 7.989 81.58 5829 32185 0,3091 0,2408 0,5499

M 0.03 7.765 74,22 5,722 29663 0.2645 0,2045 0.469

B 0.04 7.549 67.85 5611 27594 0,227 01749 0.4019

6] 0.05 7,341 62,34 5,496 26415 0.1953 0,1506 0,3459

m 0.06 7,142 57,57 5,384 23353 0.1686 0,1305 0,2991

8] 0.07 6,952 53,43 5o |4 0146 0.1137 0.2597

191 0,08 6.772 49,84 546 18641 0,127 0,09969 0,2266

[10] 0.09 6,601 46,73 5,052 18009 0,109 0,08792 0.1988

1] 0.1 6.44 44,04 4,348 16529 0,09728 0,07602 01753

2] 0.1 6.29 4173 4,848 15201 0,08586 0,06963 01555

13l 012 6.151 39.74 4,755 14022 0,07629 0.06269 0,139

[14] 013 6,024 36,05 4,668 12987 0,06632 0,05683 01252

[15] 0.14 5,909 36,63 4,589 12093 0,06173 0.05197 0,137

[16] 015 5,808 35,44 4518 1131 0,05636 0,04798 0.1043

7] 0.16 572 34,48 4,457 10707 0,05206 0,04478 0,09684

18] 017 5651 33,72 4,407 10207 0,04873 0.04228 0,09101

9] 018 5,596 33,16 4,367 9831 0,04628 0.04043 0,0867

[20] 0.19 5,558 32,78 431 9575 0,04464 0.03918 0,08383

21] 0.2 5,538 32,58 4326 9439 0,05638 0,03853 0,0949

Figure 4.1.5 — Arrays Table for the rod heat transfer example.

100 10
T[] \ h[i]
cc) 0 frop _ |9 (W/m?2K)
80 8
70 7
60 6
50 5
40 4
30 3
20 A2
0 002 0,04 0,06 0,08 0.1 012 014 0,16 0,18 0,2
x[i] (m)

Figure 4.1.6 — Temperature distribution and convective coefficients for the rod heat transfer example.
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Figure 4.1.7 — Heat transfer rates for the rod heat transfer example.
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4.2 Dynamic heat transfer in a Trombe wall

The figure represents a wall that also acts as a solar

lass
’ collector (Trombe wall). Solar radiation reaches the
2 outside surface, protected by a glass pane with a
U . transmittance of 0.85 and an absorptance of 0.1 for solar
20°C ﬂ Tamb radiation wavelengths. The glass is opaque to longwave
concrete radiation, and has an emissivity of 0.8 (equal to the
b5 il 1:=20 absorption coefficient for longer wave radiation). The
| | concrete wall has an absorptance and an emissivity equal
x=0 x=02m to 0.9 (all wavelengths). The distance between the glass

pane and the wall is equal to 10 cm (filled with air), and

Figure 4.2.1 — Trombe wall. . :
1oure rombe wa the wall thickness and height are 0.2 and 2.5 m.

The indoor temperature is kept at 20°C, and the indoor and external convective heat transfer
coefficients are 5 and 20 W/m?°C, respectively.

During a Winter day, the incident solar radiation on a vertical surface and the outdoor ambient
temperature vary according to the table below.

hour 1 2 3 ) 5 6 7 8 9 | 10 | 11 | 12
Tamb (°C) 107 | 105 [ 104 [ 102 [ 102 [ 100 | 99 [ 103 | 114 [ 125 | 134 | 141
Lsor (W/m2) 0 0 0 0 0 | 22 | 50 | 75 | 158 | 237 | 300 | 325
hour 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24/0
Tamb (°C) 147 [ 152 [ 152 [ 153 [ 147 [ 140 [ 128 [ 122 [ 127 [ 123 [ 121 | 108
Lsor (WIM?) 316 [ 276 | 187 | 73 | 55 | 43 | 20 | o 0 0 0 0

Considering an initial wall temperature distribution to be defined, obtain the wall temperature
evolution during one day, by discretising the wall with the equally spaced 5 volumes/nodes
represented in the figure. Calculate the variation of the heat transfer rate to the indoor space.
Analyse the effect of varying the time step and number of nodes on the results.

A distributed model will be applied to the wall, modelling the heat transfer along its thickness.
The glass pane will be considered at a uniform temperature (global approach). All temperatures
will vary along time (dynamic situation).

As seen in section 1.3.2, using the implicit formulation, the discretised equation for the internal
wall volumes (2 to 4) is

(ti+it-1f) k rmt+At t+At t+At
p Cp Ax T i (Ti+1 + T, — 2T; ) (4.2.1)

while for i = 1 we will have conduction and convection with indoor air:

t+At _pt
p 2 ) = (1 = i) 4 (g - o) 422

For the wall external volume (i = 5) we need to consider the transfer by conduction, the free
convection in the air gap between the wall and the glass (rectangular enclosure), the longwave
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4.2 — Dynamic heat transfer in a Trombe wall

Chapter 4 — Distributed and combined modelling examples

thermal radiation balance between those two surfaces, and the solar radiation absorbed by the
wall (transmitted through the glass):

At*_Lt+at?t

Ax (TsHM—Tt) t+At t+At t+At (pt+At t+At (TSH ~Tg )

oy (T — TEXAL) — pLRAL(TEHAL — TEHAL) — T+
&w &g

+ a, T I (4.23)

For the glass energy balance, its thermal inertia is neglected (small thickness), and therefore we
have a quasi-steady state equation:

J(T5t+At4_Tgt+At4) A A

t+At t+At t+At t+ t _ t+At __ t+ t

hout (TS = Tg ™) + =+ aglsor = he(T5 Tamp ) +
sw &g

4 4
+e50 (Tg”“ — Tt ) (4.2.4)

Starting with an initial temperature distribution, equations (4.2.1) — representing 3 equations —
to (4.2.4) allow the calculation of the 5 wall temperatures and glass temperature, for all instants
(t + At). The wall-glass enclosure convective coefficient (hg, ) is a function of the temperature
difference (Ts—Ty), and will also be calculated along time.

Figure 4.2.2 presents the Equations Window and Figure 4.2.3 the Formatted Equations
Window. Besides the dimensions and properties, and the previous equations, the climatic
variables (ambient temperature and solar radiation) for each time are interpolated from the
hourly values introduced in the Lookup Table (“Lookup 1” — see Figure 4.2.4). The Duplicate
instruction is used to write the equations for the 3 internal nodes. The EES Procedure
Tilted_Rect_Enclosure, from its heat transfer database, is used to calculate h,,, as a function
of (Ts—Ty). The heat flux exchanged between the wall and the indoor space is also calculated
(g_dot_int, or g;;;). A Parametric Table (“Table 17) is created with several rows, each for a
given instant of time (step DELTAL), and the previous temperature values are read from the
previous row (row number “row-1").

Equations Window
-

"Mrombe Wall"
N=5 "nodes along wall thickness"”
1=0,20 "wall thickness"
DELTAx=L/(N+1)
#1]=0
duplicate i=2;N
[i]=x[i-1]+DELTAX
end
k=k_{'Concrete_stone_mix": 26)
c_p=c_(Concrete_stone_mix; 26)*1000 "in J/kgk"
rho=rho_(Concrete_stone_mix’; 26)
alpha=0,9 "wall solar absorptivity”
epsilon=0,9 "wall emissivity"”
tau_g=0.85" glass transmissivity, constant value - approximation”
alpha_g=0,1 "glass solar absorptivity”
epsilon_g=0.8 "glass emissivity - long wavelength”
T_int=20
h_i=5
h_e=20

DELTAt=60

row=1+time/DELTAt

hour=time/3600

|_sol=Interpolate1({Lookup 1% Vertical Rad’ hour;hour=time/3600)
T_amb=Interpolate 1{Lookup 1"/Extemnal Temp" hour;hour=time/3600)

"Energy balance of internal nodes: nodes 2 to N-1"
duplicate i=2;N-1
rho*c_p*DELTAx*(T[i]-TableValue(Table 1:row-1:#T[i])/DELTAt=k/DELTAX(T[i-1]+T[i+1]-2*T[i])
end
"Boundary conditions: nodes 1 and N"
rho*c_p*DELTAx/2%(T[1] Tab\EVaIuE('Tabla 1 row-1:#T[1])/DELTAt=h_i*(T_int-T[1]}-k/DELTAx*(T[1]-T[2]} “internal wall surface "
q_dot_int=h_i"(T[1]-T_int) “internal heat flux, Wim2"
tau_g*alpha®l_sol+k/DELTAx(T[N-1]-T[N])-h_gw*(T[N]-T_g)-(sigma#*((T[N]+273,15p4-(T_g+273.15)*4)/(1/epsilon+1/epsilon_g-1))=rho*c_p*DELTA/2*(T[N]-TableValue(Table 1";row-1;#T[5])/DELTAt "ext wall surface”
Call Tilted_| Rect . Enclosure(Air; T[5]; T_g: 100;2.5; 0,10; 90 - h_gw; Nusselt; Ra) "here T[5] has to be specified”
"Glass energy balance - negligible inertia”
alpha_gl_sol+h_gw*(T[N]-T_g)+{sigma#*{({T[N]+273 15)4-(T_g+273 15)4)/( 1/epsilon+1/epsilon_g-1)}=epsilon_g*sigma#*((T_g+273,15}-T_amb+273 15)4)+h_s*(T_g-T_amb)

EU [Line:21 Char10 | Wrap: On | Insert Caps Lock: Off | 51 C kPakl massdeg | Warnings: On | Unit Chic On  Complex: Off | Syntax Highlight:Off

Figure 4.2.2 —Equations Window for the Trombe wall example.
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(3] Formatted Equations
Trombe Wall
N = 5 nodes along wall thickness

L = 02 wallthickness

_ L
S T
X o= 0
% = Ky ¢ A (or i =2t N)

K = K ('CONCIEE yyong,mies 26 )
€ = € ("Concrete ymemy: 26 ) - 1000  in JkgK
p = MO (CONCIEe jygng mad 26 )
@ = 08 wall solar absorplivity

e = 09 wallemissmaty

1

. = 085 glass constant value -

@y = 01 glass solar absorptivity

& = 08 glass emissivity- long wavelength
To = 20
h =5
he = 20
A = 60
time
ow o= 1
El
pour o lme
o = 3s00

time
lse = Interpolatel {‘Lookuﬂ'. hour; Vertical Rad ; hour = W]

me
Tams = Interpolatet ['Luokun 1. “hour, External Temp' ; hour = W]

Energy balance of internal nodes: nodes 2to N-1

[T, - Tablevalue (Table 1" row - 1. Tr )
ot

PGy oaX

Boundary conditions: nodes 1and N

ax [Ty - TableVale (Table 1" row — 1: Ty )
2 | at

Qu = b+ (Ty= Te) interal heatfux Wim2

Heat Transfer: numerical modelling with EES applications

]:;—-(T_MT_‘?z-r) for i = 210 N-1)

K
]: B (Tee= Ty)- - (Ty = T2) intemal wall surface

K i (Ts + 27315 ¥ Ty + 27315 z" _ ax_ [Ty - TableValue (Table 1. row - 1. Ty )
ool o (Ta= Ts) = hg o (To— Tp)— 5670E-08 [wimix') 3 L s extwall surface
—+ =1
5

Call 1ied,gorancionwre (AR : Ts: Toi 100 25 01 90 : hg,: Musselt; Ra ) here Tshas to be specified

Glass energy balance - negligible inertia

. To+ 27315 ) - (T, 7 ¢
Gy la * Mgy - (Te= Ty)+ 5670E-08 MmMEK' [4“;[' 7315 ) 1( + 2318 )

L

= g S6T0E-08 MWIMAKY - ((Ty + 27315 ) = (Tym + 27315 ) )% 0y (Ty = Tom)

Figure 4.2.3 — Formatted Equations Window for the Trombe wall example.

[ Lookup Table

- ]

Lookup 1 |
< 3
hour Vertical Rad External Temp
[Tsv] [Wim2] [°Cl
Row 1 0 0 0.7
Row 2 1 0 105
Row 3 2 0 104
TRowd | 3 0 102
Row 5 4 0 102
Row 6 5 0 10
Row 7 6 2 99
Row 8 7 50 103
TRowg | 8 75 104
Row 10 9 158 125
Row 11 10 237 134
Row 12 11 300 14,1
Row 13 12 325 U7
TRow 14| 13 36 162
Row 15 1 276 152
Row 16 15 187 153
Row 17 16 73 47
Row 18 17 55 "
TRow s | 18 43 128
Row 20 19 20 122
Row 21 20 0 17
Row 22 21 0 13
Row 23 22 0 1,1
TRow2d | 2 0 108
Row 25 24 0 107

Figure 4.2.4 — Lookup Table with hourly climatic data for the Trombe wall example.
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Chapter 4 — Distributed and combined modelling examples

Figure 4.2.5 shows the first rows of “Table 1”. For a At of 60 s, a total of 1441 rows were
created (24 hour simulation). The initial (first row) wall temperature values were obtained after
a couple of simulations starting with a fixed initial value of 22°C; they represent a daily cycle,
and are equal to the temperatures at the end of the day.

= Parametric Table = e ==
Table 1 |
[nafl 3 ™« 5 ™ ™7 8 ) ™0 ™ ™2 . ™ ~
5 Tann time ‘ hour ‘ Do b in ‘ T, ‘ T3 Ty T ‘ Tg ‘ hgw ‘ Gt
[s] [°C] [W/m2] [°C] [°C] [°C] [°C] [°C] [°C] [W/m2K] [W/m2]
Run 1 0 2248 2262 2247 2187 | 2097
Rinz | 60 0.01667 107 0| 2247 2261 2241 2186 209 1254 1232 1235
Run 3 120 003333 10,69 0| 2246 226 | 2239 2184 | 2095 1253 1232 1229
Run 4 180 0,05 10,69 0| 2245 2258 2238 | 2183 | 2093 1253 1231 1223
Run 5 240 006667 10,69 0| 2243 2257 2237 2182 2082 1252 1231 1217
Run 6 300 0,08333 10,68 0| 2242 2256 2236 28| 2091 1252 1231 1211
Run 7 360 0.1 1068 0| 2241 2255 2234 279 208 1251 1231 12,06
Run 8 420 0,167 10,68 0 24 2253 233 2178| 2088 1251 123 12
Run 9 480 01333 10,67 0| 2239 2252 2232 277 2087 125 123 1194
Run 10 540 0,15 10,67 0| 2238 2251 | 223 275 2086 125 123 1189
Run 11 500 0.1667 10,67 0| 227 225 2229 2174 | 2085 1249 123 1183
Run 12 660 0,1833 10,66 0| 2235 2248 2228 2173| 2084 1249 1229 177
Run 13 720 0.2 10,66 0| 2234 2247 2227 2172 2082 1248 1229 172
Run 14 780 02167 10,66 0| 2233 2246 2225 27| 2081 1248 1229 11,66
Run 15 840 02333 10,65 0| 2232 2245 2224 2189 208 | 1247 1229 116
Run 16 a00 025 10,65 0| 223 2243 2223 2188 2073 1247 1228 11,55
Run 17 960 0.2667 10,65 0 23 2242 2221 2186 2078 1246 1228 1149
Run 13 1020 02833 10,64 0| 2229 241 22 2185 207 1246 1228 1143
Run 19 1080 03 10,64 0| 2228 224 | 2219 2164 | 2075 1245 1228 1138
Run 20 1140 03167 10,64 0| 2226 2238 2218 2163 | 2074 1245 1227 1132
Run 21 1200 03333 1063 0| 2225 2237 2216 2181 | 2073 1244 1227 127
Run 22 1260 0,35 10,63 0| 2224 2236 215 26| 2072 1244 1227 1121
Run 23 1320 03667 1063 0| 2223 2235 2214 2159 2071 1243 1227 1115
Run 24 1380 03833 10,62 0| 222 23 212 215 2088 1243 1226 11
Run 25 1440 04 10,62 0| 2221 2232 2211 2156 2068 1242 1226 1mos |,

Figure 4.2.5 — First rows for Parametric Table “Table 1” in the Trombe wall example.

Figure 4.2.6 shows a graph with the evolution of wall temperatures (internal and external
surfaces) and glass temperature. Note the higher temperature swing of the external wall surface,
which reaches about 34°C, and that at night the external surface becomes colder than the indoor
surface. The glass temperature closely follows the outdoor ambient temperature. Figure 4.2.7
shows the evolution of the h,, free convection coefficient.

36
T

(OC) 32
28

24

5 nodes
60 s step

T[5] - ext

T[1] - int

Figure 4.2.6 —Time evolution of several temperatures in the Tromble wall example.

64



Heat Transfer: numerical modelling with EES applications

hglzassi-wall

35
(Winog)

1 4
0 2 4 6 8 10 12 14 16 18 20 22 24

hour

Figure 4.2.7 — Evolution of the free convection coefficient (wall-glass enclosure).

The effect of the time step, and also number of volumes/nodes, were analysed by increasing At
five times to 300 s, and decreasing the number of nodes to only 3. Figure 4.2.8 shows the effect
in the wall temperature profiles. The larger time step leads to a slight time delay in following
the temperature changes, especially in the external wall surface, but differences are not very
significant. Even the use of only 3 nodes leads to acceptable results. In this case, there is no
practical interest in increasing the number of nodes. That is the reason why some software tools
dedicated to building envelope thermal simulation only use 3 nodes in each wall.

36
T 34 —— 5nodes, 60 s
(°C) R
32 =z 5 nodes, 300 s S T[5] - ext

:z:=3 nodes, 300 s

Figure 4.2.8 — Wall temperature profiles (internal and external surfaces) for different time steps and number of
nodes.

Figure 4.2.9 analyses the evolution of the heat flux exchanged between the wall and the indoor
space. It is always positive, that is, the wall heats the indoor space even with lower outside
ambient temperatures. It is noticeable that the maximum flux occurs at the end of the evening,
several hours after the maximum temperature on the wall external surface. This is the
consequence of the wall thermal inertia. Therefore, the use of a Trombe wall is adequate in
indoor spaces used in the evenings and early night periods. Again, the differences when using
only 3 nodes and a larger time step of 300 seconds are small, and more significant during the
early hours of the day.
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4.3 — Dynamic heat transfer in a ventilated Trombe wall

Chapter 4 — Distributed and combined modelling examples

Figure 4.2.9 also shows a comparison with the indoor heat flux for a “normal” wall, without the
outside glazed surface. In that case, the heat flux would always be negative, meaning that the
wall and the indoor space would loose heat throughout the day to the outside ambient air.

40

Qint
(W/m?)
30
25 - —
20 A e S
15 /~—5nodes, 60s ™
1ol 1~ = 3 nodes, 300 s

Figure 4.2.9 — Evolution of the heat flux to the indoor space for different discretisations and a non-glazed wall.

The wall thermal performance can be improved with the use of a selective coating on its outside
surface. In this example the external wall surface had an emissivity for longwave radiation equal
to its solar absorptance (0.9). The use of a selective coating may reduce the emissivity
associated with the loss of thermal radiation to much lower values (<0.1), while maintaining
the same solar absorptance, increasing the wall temperatures and indoor heat flux.

4.3 Dynamic heat transfer in a ventilated Trombe wall

Consider a ventilated Trombe wall, as shown in the
/ picture. The indoor air circulates by thermosyphon effect

in the space between a glazing and a concrete wall, in a
rectangular channel with a thickness of 10 cm. The
concrete wall has a thickness of 20 cm, a width of 3 m and
a height (between air inlet/outlet) of 2 m. Indoor air is

== - always at 20°C, with an indoor heat transfer coefficient of
Figure 4.3.1 — Ventilated Trombe wall. 5 W/m?K.

N

. /o

Tamb

The outside glazing is a double pane glazing, with a global transmission coefficient for solar
radiation of 0.72 (constant), and with an overall heat transfer coefficient from the internal pane
to the outside (including radiation and external convection) of 2.2 W/m?K. The glazing solar
absorptivity is equal to 0.1 and its emissivity for longwave radiation is 0.8 (equal to the
absorption coefficient); the glazing is opaque to longwave radiation. The concrete wall has an
absorptance and an emissivity equal to 0.9 (all wavelengths).

Using an EES model, obtain the wall temperature evolution during a Winter day (the same as
defined in example 4.2), by discretising the wall with 5 equally spaced nodes along its thickness,
and also the heat transfer rate from the wall to the indoor space. Use a global model for the air
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flow in the ventilated space, considering only inlet and outlet temperatures; for that flow, use
friction losses only in the channel between wall and glass, and assume an overall local pressure
loss coefficient of 3 (referred to the channel velocity).

The concrete wall will be modelled by assuming its temperature varies only along its thickness.
This is a simplification, as in reality the temperature also changes in the vertical direction, as
the circulating air temperature also changes. For the air flow, a global model approach will be
followed, considering in each flow section the mixed mean (average) flow temperature. And
the heat exchange between the air and channel surfaces (wall and glass) will be treated by
considering the efficiency of heat transfer (and convection coefficient), without the need of
obtaining the temperature evolution in the flow direction; this means that the average outlet air
temperature will be related to the inlet temperature, flow rate and surface temperatures. And
the air flow rate will be obtained after an hydraulic balance between the pressure drop and the
buoyancy effect cause by its heating.

The distributed wall model is similar to the one in the previous section, with equations (4.2.1)
and (4.2.2) expressing the temperatures of nodes 1 to 4. However, the equation for the external
wall surface (volume/node 5) needs to be modified to take into account the channel air flow.
The same happens with the glazing balance (internal pane).

The global approach to the air flow heat transfer follows the scheme in Figure 4.3.2.

Tair,out
4

risf 77

Tair,in

Figure 4.3.2 — Channel flow heat transfer.

Using the efficiencies of the steady-state transfer of heat with the 2 channel surfaces, we may
calculate each heat transfer rate as a function of surface temperature and inlet air temperature.
For the transfer between wall and air, using the forced convection coefficient (hp¢), we may
write

. hrcAw

Qw—air Ew—air Qldeal - [1 — exp ( FC >] Mcp air (T Tair,in) (4-3-1)

Cp,air

and for the transfer between glass and air, assuming the same convection coefficient in both
surfaces, which is a simplification, we may write

A
Qg air — gg air Qldeal - [1 - exp( Frcty )] Mcp alr(T alr Ln) (4-3-2)

Cp,air

Then, the heat rate exchanged by the air with the wall and glass will change the air temperature
between inlet and outlet:

Qair = Qw—qair + Qg—air = Mcp,air (Tair,out - Tair,in) (4.3.3)
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Chapter 4 — Distributed and combined modelling examples

The air flow rate is also unknown, and will be calculated after an hydraulic balance, stating that
there is a (quasi-steady state) balance between the air flow pressure drop and the buoyancy
effect due to air heating. We may write:

—2

- AH\ — air
Pair 9 B (Tair,out - Tair,in) AH = (Zl K; + fD_h) Pair 172 (4.34)

with the average air velocity (v) easily related to the flow rate. The sum of local pressure loss
coefficients (K;) was given as equal to 3, and the friction factor (f) will be calculated through
the available EES procedure (the same to be used to calculate the heat transfer coefficient).

Equations (4.3.3) and (4.3.4) will be added to the model, to be able to calculate Ty;;. o, and M,
and equations (4.3.1) and (4.3.2) will be used in the equations for node 5 and glass internal
pane, which will become:

E+AE ot ¢ t+AtY _rvart
pe Ax (Ts+ -T) ( TEHAE _ TEHae) oLt alr_"(TS Tg )+a T 1A 435
P2 Aw N wtgisol -9
ew &g
and
4 4
O.(T5t+At _T5+At ) Qt+At
t+At __ “g-air __ t+At t+At
NN + aglsor —=U o (TEHAE — THED (4.3.6)
Ew &g g

The complete model includes then equations (4.2.1) - 3 equations, (4.2.3), (4.3.3), (4.3.4) (4.3.5)
and (4.3.6). A total of 8 equations to calculate T[1] to T[5], Ty, Tyir,out and M. The convective
coefficient (hgc) is also required and will be calculated from the EES heat transfer correlation
database, assuming there is forced convection in the channel. Actually, this is a situation where,
due to the low air velocities, mixed convection may occur. But, by calculating the coefficients
for separate forced and free convection, it was found that they have the same order of
magnitude; therefore, the mixed convection coefficient will be similar. It will however change
over time, due to the change in air flow rates.

Figure 4.3.3 presents the Equations Window and Figure 4.3.4 the Formatted Equations Window
associated to this model.

| =]

ELTA0x"(Ti|-TableValue{ Table T-row-1#T[)VDELTAt=K/DELTAX(TT-1}4T[i+ 1}2°T[)

Tt=h_j"(T_int-T1]HDELTAC(T-T[Z]) “intemal w

+273,154-T_g+273,15)4)/(Vepsilons 1/epsion_g-1)j=rha*c_p'DELTAx2'ATIN}-TableValus(Table Trow-1#T[S]|/DELTAt "ext surface]

- 8°A*((T[N]+273,15p4-{T_g+273, 15} g 1)FU_g'A'(T_g T_smb) " dout

ai ) (T[N-T_int)+{1-EXPi-h_FCAM_dote_p_ain"(T_g-T_int)

EU [ Line Caps Lack Off [S1C kPs ki mass deg | Wamings: On | Unit Chkc On  Complex: O | Sytax Highlight:Off

Figure 4.3.3 —Equations Window for the ventilated Trombe wall example.
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) Formatied Equations [E=SE=E
"
Ventilated Trombe Wall - with air global model

N = 5 nodes along wall thickness
L = 02 wallthickness
W= 3 wallwidth, m
H = 2 wallheight m
A= W - H walluseful area
Ly, = 01 walglassgap
U, = 22 Wm2K
. L

N
x 0
% o= %
k
B
[
o
<
%
%
To = 20
ho= 5
ho= 20
a 60
ow = 4+ 2

at

nour = Jme_

3600
Iy = Interpolatet [‘LuukupT ‘hour; “Vertical Rad ; hour = gg‘—;ﬂ]

time
Tamo = Interpolatet [‘kauuﬂ\ ‘hour; ‘External Temp' ; ‘hour' = ﬁ]

Energy balance of wall internal nodes: nodes 2ta N-1

[T, - Tablevalue (Table 1; row — 1; T; ) K
P ocpax = — (Tog + T - 2-T) (for i = 2t N-1)
B =
Boundary conditions: nodes 1and N
¢, = [T = TableValue [Table ', row - 1, T+ }] LT, ) £ (T, - Tp) intemalwall surface
- = = h (Te- To)- o -T2 v
Qo = 0y (Ty = T ) internal heatfluxwall surtace, Wim2
L S ) \ A W T . c720.10 - 4 [\Tar 7731 Y- (mpr e &, [Ts - Tablevawe (Tsblet row - 1. T; )
o s = (Te - Te) I mic e | BN (T = Ts) - 6720 R R R =R o ext surface
R
Call duetflow (‘AIr ; Ty 1015 1 Loy Wi H 00 Ml Nyi 4P 5 v f Re)
Glass energy balance - negligible inertia
I A+ |1 o ——1] i oo T,)+ sa2emn® - p . [Tes 280 - (Tgrzmis )y
g lsal = ©XP |- Neg T — W Cpa (T = Tg) x 3 = Uy (Ts = Tame ) gouse glazing avoids reverse flow; Tg for intemal pane
it — =1
T g

Air pressure equilibrium
total coeff local pressure losses = 3
B = B (A, ;T=20;FP=101)
Psr = p (AN, T=20,P=101)
Car = CD [Aify ;T=20;P= 101} 1000

- 98 2 [T, T, = [3+f L ﬂ
os B sron= T = pl N

W= o vel - Ly W

Variation T air-modelo global model
A
Taron= Taw = |1 = exp|=hec - (|- (Ts = Twx)+ |1~ exp|-hec ATy = T)
M Coar W e :

cout ~ ZU]

Figure 4.3.4 —Formatted Equations Window for the ventilated Trombe wall example.

The EES Procedure Ductflow, from its Heat Transfer & Fluid Flow database, was chosen to
calculate both the forced convection coefficient in the air channel, and the flow friction factor,
as a function of air flow rate and (physical and geometrical) properties.

The heat flux exchanged between the wall and the indoor space is also calculated (q_dot _int,
Or Gine), Dy summing 2 different contributions: the flux transferred from the internal wall
surface by convection (q;,¢ ), and the heat rate transported by the heated air that re-enters the
indoor space (§in¢ qir)- The climatic variables (ambient temperature and solar radiation) for
each time are interpolated from the hourly values introduced in the Lookup Table (“Lookup 1”
—the same as in Figure 4.2.4).

Figure 4.3.5 shows the first rows of “Table 1”. For a At of 60 s, a total of 1441 rows were
created (24 hour simulation). The initial (first row) wall temperature values were obtained after
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a couple of simulations starting with a fixed initial value; they represent a daily cycle, and are
equal to the temperatures at the end of the day.

B parzmetric Table (=N R =<
Table 1 |
<= ™ ™ o™ ™= [haB) 7 s LB [Lafl) o Laf8 o o o 8 o [Laf8) o~
‘ : A PR ‘ R ‘ i R ‘ S ‘ o T T T
s] [°C] [Wim2] [°C] [l rel il rcl rel rel [kg/s] [Wim2°C] [Wim2] [Wim2] [Wim2]
Run 1 0 2468 2511 2524 2506 24,58
Run 2 60 0.01667 07 0 2467 251 2622 2505 24.57 19,92 20.63 0.05162 1825 0.1095 1.419 288 2337 5429
Run 3 120 0.03333 10.69 0 2466 2508 2521 2504 24.56 19.91 20,63 0.05153 1822 0.1097 1.419 28,72 23.32 5404
Run 4 180 0,05 10,69 0 2465 2507 252 2503 24,55 19.9 20,62 0,05145 1819 0,109 1.418 28,65 23,27 5379
Run § 240 0.06667 10.69 0 2484 2506 2619 2501 2454 19.9 20.62 0.05136 1815 oM 1.417 28,57 73.22 5,354
Run 6 300 0.08333 10,68 0 2463 2505 2518 25 2453 19.89 20,62 0.05128 1812 0.1101 1.416 285 2317 5.328
Run 7 360 [X] 10.68 0 2462 2504 2517 | 2499 24.52 19.88 20,62 0.05119 1809 0.1102 1.416 2842 2312 5.303
Run 8 420 0,167 10,68 0 2481 2503 2516 2498 245 10,88 20,62 0,05111 1806 0,103 1.418 28,38 23,07 5,278
Run 9 480 01333 10.67 0 246 2502 2515 | 2497 24.49 19.87 20,61 0.05102 1803 0.1104 1.414 2827 23.02 5.253
Run 10 540 0.15 10.67 0 245 2501 2513 249 24.48 19.86 20,61 0.05094 1800 0.1105 1.413 282 22,97 5.228
Run 11 600 0,1667 10,67 [ 2 2512 | 243 24,47 19,85 20,61 0,05085 1797 0,106 1.412 28,12 22,92 5.203
Run 12 660 01833 10.66 0 2457 2499 2611 2494 24.46 19.85 20.61 0.05076 1794 0.1108 1.412 28,05 22,87 5178
Run 13 720 02 10,66 0 2456 2438 251 2492 24.45 19,84 20,61 0.05068 1791 0.1109 1.411 27,98 22,82 5.154
Run 14 780 02167 10,66 0 2455 2437 2509 2491 24.44 19,83 206 0,05059 1788 0411 141 279 22,77 5129
Run 15 840 02333 10,65 0 2454 249 2508 2.9 24.43 19,83 206 0,05051 1785 0,111 1.409 27,83 2,72 5,104
Run 16 900 0.25 10.65 0 2454 2494 2507 | 2489 24.42 19.82 206 0.05042 1782 0.1112 1.408 27.76 22,68 5079 ||,

Figure 4.3.5 — First rows for Parametric Table “Table 1” in the ventilated Trombe wall example.

Figure 4.3.6 shows a graph with the evolution of wall temperatures (internal and external
surfaces), internal glass temperature and air outlet temperature. The variation of wall surface
temperatures is similar to Figure 4.2.6 (non-ventilated wall), but, due to the use of a more
insulating double glazing, the temperatures are higher. A maximum of 36°C occurs on the
external wall surface. The inside glazing temperature is also significantly higher, compared to
the non-ventilated single glazed wall; it is most of the time higher than the air inlet temperature
(20°C). The air is heated in the channel during the whole 24 hour period, achieving a maximum
of 22.7°C at 14:00.

40
T 36
(°C) 5,

T[5] - ext
28

24

20 Tair‘ou1

16

,,,,,

12 g R

hour

Figure 4.3.6 —Time evolution of several temperatures in the ventilated Tromble wall example.

Figure 4.3.7 shows the evolution of the air flow rate (M), as well as the forced convection
coefficient (hg.) in the channel. As can be seen, the flow rate is always positive (upward
direction), with a maximum value at 14:00. The convection coefficient more or less follows the
same pattern. However, there is an instability associated with the EES Ductflow calculation,
which is related with the transition zone from laminar to turbulent flow. This is better
understood with the representation of Figure 4.3.8, where the Reynolds number is shown.
However, this does not modify the main results and conclusions.
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Figure 4.3.7 — Evolution of channel air flow rate and convective heat transfer coefficient.
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Figure 4.3.8 — Evolution of Reynolds humber and convective heat transfer coefficient. Red line for Re=2300.

Figure 4.3.9 analyses the evolution of the heat flux exchanged between the wall and the indoor
space. It also represents the 2 different components: surface convection and airflow. In this wall
the maximum heat input (about 90 W/m?) occurs at about 15:00, sooner than in the case of the
unventilated wall of section 4.2, where the maximum occurred at 18:00. This is due to the faster
removal of the heat stored in the wall when air circulation is used. The ventilation contribution
is higher at 14:00. Therefore, this ventilated Trombe wall is more adequate to indoor spaces
that are used in the afternoon.

Figure 4.3.10 compares the heating contribution of this ventilated wall with a non-ventilated
wall, also using double glazing. The ventilated wall has a larger heat flux swing, with an earlier
peak. A comparison is also made with an unglazed wall, which as seen in section 4.2 has a
negative performance, loosing heat to the outside environment.
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4.4 — Car glass heating system
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Figure 4.3.9 — Evolution of the heat flux to the indoor space in the ventilated Trombe wall.
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Figure 4.3.10 — Evolution of the heat flux to the indoor space for the ventilated wall, an unventilated wall with

double g

lazing and an unglazed wall.

4.4  Car glass heating system (dynamic)
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Figure 4.4.1 — Car glass discretisation.
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To eliminate vapour condensation
in the rear glass of a car, very
small electric wires are connected
to the glass inner surface. The
wires have a spacing of 4 cm and
generate a heating rate of 10 W
per meter of glass width when
electric current runs through
them.
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The glass is 4 mm thick and has a thermal conductivity k=0.84 W/m°C and a thermal diffusivity
a = klplcy = 0.39x10° m?/s.

Starting from an initial situation when the glass, internal and external temperatures are all equal
to 5°C, obtain the glass temperature distribution after 15 minutes. The inside and outside heat
transfer coefficients remain constant at 6 and 20 W/m?C, respectively. Indoor and outdoor
temperatures also remain constant. Use a grid with nodes spaced 1 mm along the glass thickness
and 5 mm along the vertical direction. The presence of condensate on the glass external surface
may be neglected.

Repeat the calculation if the indoor temperature is kept at 15°C, with a constant external
temperature of 5°C and an initial glass temperature of 5°C.

Using the finite volumes method, the glass will be discretised in 2D. Variations along the width
direction are neglected. Figure 4.4.2 shows the region to consider, according to the values of
Ax and Ay imposed. Only half of the distance between electric wires needs to be considered, as
there is symmetry at mid-distance between wires (i = 5). There is also symmetry at the i = 1
surface, with half of the input power (5 W/m) distributed upwards and half downwards.
Therefore, only 5 x 5 nodes/volumes need to be considered.

5,1 155

4.1 4.5

3 1 ediibg-internal
’ volume
L1

y 2,1
5 mm
11 15
j 1_ gl

X 10 /" Tmm
Wim

Figure 4.4.2 — Nodes and different types of volumes.
There are 9 internal volumes, 6 surface half-volumes with convection (at j = 1 and 5), 6 half-
volumes in symmetry planes (at i = 1 and 5), and 4 corner volumes.

Using the implicit method, the discretised equations for the internal volumes (i = 2 to 4, and
j=2to4)are

(Tit;rM_Titi) k t+At t+At t+At
P CprAy A—t = EAy(Ti,j—l + Ti,j+1 - 2Ti,j ) +
k t+At t+At t+At
+5 Ax (TS + TR — 2T 4.4.1)
or
(rff-1) _ & A A A k A A A
ij ij) _ t+AE t+At _ omt+At) 4, K (mt+At t+At _ Hmt+At
p ey =g = g (T + Ty — 2T07%) + 5 (T + Ty — 2T )wa)
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For the surface half-volumes with convection (j = 1 and 5, with i = 2 to 4):

(THM i) TEHAL _ t+At
p cp > v A ( ) +
k A
A Zx(TH—lAf + Tﬂ-+1A§ t+At) + hmtAy(Tmt ltimt
and
Tt+At_T
pCp - Ay ( = ) Ay(Tt"IAt t+At) +
k A
+ __x +1A§ + €I-+1A§ - ZTHM) + hextAy(Text lt;At

For the surface half-volumes in symmetry planes (i = 1 and 5, with j = 2 to 4):

t+At t
Ay (TL/' _TLJ) _ Kk Ay (it t+At t+At
pephxy = = o (Tjo + T — 2T57%) +
k t+At t+At
+ Ay AX(TZ.] Tlrj
and
t+At t
Ay (T5l _T5J) k Ay (oAt t+At t+At
pcpr?A—t sz T5]1+T5J+1—2T5 )+

k t+At t+At
+45 A (T = T5)
Finally, for the 4 corners we have:

Ax Ay (Tight-1f,) _ K Ay rt+At t+At k Ax rtvnt t+At
Ly 2 2 At T Ax 2 (T )+ (T ) +

Ay
+hint 7 (Tint t+At) +5

t+At
o Axly (ritt-1is) _ k Ay Tt Tt+At) b= k Ax( t+At _ t+At) +
Pa o2 At T Ax 2 15
Ay t+At
+hext 7 (Text - T
t+At t
c Ax Ay (153 —Ts,1) k AY( t+At t+At) _|_ k Ax( t+At Tt+At) +
P At 51
Ay t+At
+hint 7 (Tint TS

Ax Ay (THM—Tss) k Ay TEHAL t+At k Ax TEHAt t+At
‘3% At sz( )+ ( - T3%) +

(4.4.3)

(4.4.9)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)

+hext > (Text - T§+At) (4.4.10)

These 25 equations are shown in Figures 4.4.3 — Equations Window — and 4.4.4 — Formatted
Equations. We could also define the coordinates of the different nodes (x,y), using array
variables x[j] and y[i], but if we represent the temperatures as a function of j and i, as the nodes
are equally spaced in each direction, there is no special advantage in adding those variables.
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k=0.84: alpha=0,39E-6
rthocp=k/alpha

h_int=6: h_ext=20

T_int=5: T_ext=5
DELTAx=0,001: DELTAy=0,005
DELTAt=15|

min=time/60

row="1+ time/DELTAt

“Internal Nodes”
Duplicate i=2:4
Duplicate =2:4
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e e

thacp DELTAx"DELTAy*(Ti:]|-tablevalue(Table 1 row-1: #T[i-j))/DELTAt= k/DELTAX"DELTA*(T[ij-1]+T[i:-1]-2*T[i]) + k/DELTAY*DELTAR*(T[i-1:j]+ T[i+1:-2°T[i:])

End
End

"surface halfvolumes with convection (j=1 and 5, with i=2 to 4)"

Duplicate i=2:4

rthocp™DELTA}/Z*DELTAY*(T[i; 1]tablevalue(Table 1’ row-1; #T[i;

)WDELTAt= k/DELTADELTAy*(T[i-2]-T[i:1]) + KDELTAY*DELTAW2(T[i-1, 1]+ T[i+1;1]-2°T[i:1])}+h_int DELTAy*(T_int-T[i-1])

1]
thocp DELTAx/2*DELTAY(T[i.5-ablevalue(Table 1 row-1; #T[i.5])VDELTAt= k/DELTAxDELTAy*(T[i4]-T[i:5]) + KDELTAY*DELTA2(T[-1,5]+T[i+1,5]-2°T[i5])+h_ext*DELTAY (T_ext-T[i.5])

End

"surface halfvolumes in symmetry planes (i=1 and 5, with j=2 to 4)"

Duplicate j=2:4

rthocp*DELTAx*DELTAy/2*(T[ 1] tablevalue(Table 1"
rthocp DELTA}*DELTAy/2*(T[5: | tablevalue(Table 1"

End

"bottom internal corner - wire"
rthocp™DELTAX/2"DELTAy/27(T[1;1]tablevalue
"bottam external comer”
rthocp*DELTAx/2*DELTAy/2*(T[1;5]tablevalue
"top internal comer”

(Table 1;

(Table 17

rhocp*DELTAx/2*DELTAY/2*(T[5: 1]-tablevalue({Table 1"

"top external comer”

rhocp DELTAX/2"DELTAY/27(T[5.5]-tablevalue({Table 17

EU |Line: 21 Char 4 ‘Wrap: On | Insert

Caps Lock:

row-1; #T[1:]])/DELTAt= K/DELTAy*DELTAX*(T[2:}-T1:il} + KDELTAX*DELTAY/24(T[1:j- 11+ T[1:+11-2T[1:]])
row-1. #T[5 ])/DELTAt= K/DELTAyDELTAx*(T4 J}-TI5 ]} + WDELTA DELTAY/2*(T[5 j-1]+T[5 j+1]1-2*T[5.]])

row-1; #T[1:1])VDELTAt= k/DELTAX"DELTAY/27(T[1:2]-T[1:1]) + WDELTAy"DELTAX/2™(T[2:1]-T[1;1])+h_int"DELTAy/27(T_int - T[1:1])+5
row-1; #T[1:5])VDELTAt= k/DELTAx*DELTAy/25(T[1:4]-T[1:5]) + K/DELTAy*DELTAx/2*(T[2:5]-T[1;5])+h_ext*DELTAW/2*(T_ext - T[1:5])
row-1: #T[5:1])VDELTAt= k/DELTAx* DELTAy/2*(T[5:2]-T[5:1]) + k/DELTAY*DELTAx/2*(T[4:1]-T[5:1])+h_int"DELTAW/2*(T_int - T[5:1])
row-1; #T[5;5])VDELTAt= W/DELTAX"DELTAy/2*(T[5:4]-T[5:5]) + k/DELTAY"DELTAX/2*(T[4:5]-T[6:5])+h_ext*DELTAY/2%(T_ext - T[5:5])
Off | Sl CkPakl massdeg | Warmnings: On | Unit Chk: On

Complex: Off Syntax Highlight:On

Figure 4.4.3 — Equations Window for the car glass heating example.
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Figure 4.4.4 — Formatted Equations Window for the car glass heating example.
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As seen before, the Parametric Table (“Table 1) expresses the different time steps (one Run
for each time step), and contains the calculation results — Figure 4.4.5. A time step of 15 s was
used in the simulations. As an array variable was used for the temperature, the results for the
final simulation/Run are also available in the Arrays Table — Figure 4.4.6.

= Parametric Table

Tavle 1 |
<+ : o o M M O M M Mo ™ e O e e e Mo e e Mo M Mz
2 s e ‘ ! ‘ T T T ‘ o ‘ A A ‘ s ‘ T ‘ T ] s ‘ 7] s ‘ o ‘ ., ‘ 7 ‘
[s]

Run 126 1875 3125 2575 2386 225 2157 2101 1725 17.24 71 16.9 16.64 1362 1364 136 1349 1333 173 1.76 173 11.65 1152 115 117 e 107 1095
Run127 | 1890 315 2576 2386 225 2167 2101 1726 | 1724 17,11 169 1664 1362 1364 136 135 1333 1174 1176 1173 1168 1152 1115 147 1114 1107 1095
Run 128 1905 3175 2576 2386 25 2157 2102 1725 17.24 w1 16.9 16.65 1362 1365 136 135 1333 174 11.76 173 11.65 1152 115 117 4 107 1085
Run129 | 1920 32 2576 2387 225 2157 2102 1725 | 1724 711 169 1685 1362 | 1365 1361 136 1333 1174 1076 1173 1165 1152 1148 | 1117 1118 1107 1098
Run 130 1935 3225 2576 2387 2251 2158 2102 1725 17.24 w1 16.91 16.65 1362 1365 1361 135 1333 174 11.76 173 11.65 1152 115 117 115 107 1096
Run131 | 1960 325 2676 2387 2251 2188 2102 1726 | 17.24 1711 1691 1665 1362 | 1365 1361 135 1333 1174 077 1174 1166 1163 1116 1118 1115 1108 1096
Run 132 1965 3275 2576 2387 2251 21,58 21,02 17.26 17.26 17,12 16,91 16,65 1363 13,65 13,61 138 13,34 11,74 MmN 11.66 11,83 11,16 11,18 11,16 11.08 10,96
Run 133 | 1980 33 2576 2387 2251 2158 2102 1726 | 1725 71z 1691 1665 1363 | 1365 1361 1351 1334 1175 1077 1174 1166 1153 1146 | 1118 1115 1108 109
Run 134 1995 3326 2577 2387 2251 21,58 21,03 17.26 17.26 17,12 16,91 16,66 1363 13,65 13,61 13.51 13,34 1,76 MmN 11.66 11,83 11,16 11,18 11,16 11.08 10,96
Run135 | 2010 335 2577 2388 2251 2158 2103 1726 | 17.25 1712 1691 1666 1363 | 1366 1361 1351 1334 1175 077 1174 1166 1153 1116 1118 1115 1108 1096
Run136 | 2025 3375 2577 2388 2251 2158 2103 1726 | 1725 17,12 1691 1666 1363 | 136 1362 1351 1334 1175 77 1174 1166 1153 1176 1118 11,16 1108 1096
Run 137 2040 34 2577 2388 2252 2159 2103 17.26 17.25 17.12 16.92 16.66 1363 13.66 1362 1351 1334 175 "7 N 11.66 1153 11.16 11.18 11.16 11.08 10.96
Run138 | 2085 3425 2577 2388 2252 2189 2103 1726 | 17.25 17,12 1692 1666 1363 | 1366 1362 1351 1334 1175 1177 1175 1168 1183 1116 1118 1116 1108 1097
Run 139 2070 45 2577 2388 2252 2159 2103 17.26 17.25 17.12 16.92 16.66 1363 13.66 1362 1351 1334 175 178 1.75 167 1154 A7 119 11.16 11.09 10,97
Run140 | 2085 3475 2577 2388 2252 2189 2103 1727 | 17.26 17,13 1692 1666 1364 | 1366 1362 1351 1335 1175 1178 1175 1167 118 1117 1119 1116 1109 1097
Run 141 2100 35 2577 2388 2252 2159 2103 17271 1726 17.13 16.92 16.66 1364 13.66 1362 1351 1335 11.76 178 175 1167 1154 A7 119 11.16 11.09 10.97
Run142 | 2116 3525 2677 2388 2252 2169 2103 1727 | 17.26 1713 1692 1666 1364 | 1366 1362 1352 1335 1176 1178 1176 1167 1164 1117 1119 1116 1109 1097
Run 143 2130 365 2578 2388 2252 2159 2103 1721 17,26 17,13 16,92 16,66 1364 13,66 13,62 13.52 13,38 11,76 1,78 11,76 1,67 11564 1MA7 0 119 11,16 11.09 10,97
Run144 | 2145 3575 2678 2388 2252 2169 2104 1727 | 17.26 1713 1692 1667 1364 | 1367 1362 1352 1335 1176 1178 1176 1167 1184 1117 | 1119 1116 1109 1097
Run 145 2160 36 2578 2389 2252 2159 2104 1721 17,26 17,13 16,92 16,67 13864 1367 13,63 13.52 13,38 11,76 1,78 11,76 1,67 11564 1MA7 0 119 11,16 11.09 10,97
Run146 | 2175 3625 2578 2389 2252 2159 2104 1727 | 17.26 1713 1692 1667 1364 | 1367 1363 1352 1335 1176 1178 1175 1167 1154 1147 | 1149 1117 1109 1097
Run147 | 2190 365 2578 2389 2252 2159 2104 1727 | 1726 17,13 1692 1667 1364 | 1367 1363 1352 1335 1176 78 1175 1167 118 1117 119 117 1109 1097

Figure 4.4.5 — Parametric Table for the time simulation of the car glass heating example.

4.4 — Car glass heating system

[TT] Arrays Table EI@
Main I
<= 2 4
Sort Ti'1 Ti;2 Ti'3 4 T\;E-

1 75,78 23.89 2253 216 21.04
2 1727 | 17.25 17.13 16,93 16.67
Bl 13,64 13,67 13,63 1352 13,35
[ 1176 11.79 1176 11,68 11,54
Bl 1118 112 1117 111 10,98

Figure 4.4.6 — Arrays Table with calculated temperatures after 25 minutes.

Figure 4.4.7 shows the time evolution of the temperatures of different volumes/nodes. Of
course, the highest temperature occurs always in volume/node (1,1), as this is where the heating
element is located. The temperatures at higher y (or i) values (farther from the wire) do not
change significantly with x (or j).

T (°C) 1,1

0 5 10 15 20 25 30 35

time (min)
Figure 4.4.7 — Time evolution of temperatures in different nodes/volumes.

76



Heat Transfer: numerical modelling with EES applications

As Figure 4.4.7 shows, the major temperature changes occur in the initial 15 minutes. After
about 25 minutes there is practically no further change in temperatures: steady-state is attained.
The maximum temperature, at the wire location, is about 26°C. The minimum temperature,
which is important to prevent condensation, is about 11°C.

EES allows obtaining a graphical distribution of the temperature in the 2 directions of space, at
a given moment. For that, you need to choose in the menu: Plots — New Plot Window — X-
Y-Z Plot; then, in the appearing window, choose Table — Arrays Table, 2-D table data, Isometric
Lines, or Color Bands, and also define the scales — see Figure 4.4.8. With or without defining
the coordinates of the different nodes (x[j] and y[i]), it is also possible to obtain a 3D type
graph, by choosing 3-D Surface. This will be shown in the example of section 4.5. That type of
graph may be rotated to have access to different perspective views.

[X-Y-Z Plot Setup
Tab Hame: |P|Dl L ™ Print Description with plot
Description: |
X-Anis Y-Axis Contour Yariable Table
[~ Transpose Aurays Table j
Columns Rows
First |1 First |1
Last |5 Last |5
Minimum (0.0 Minimum [0.0 Minimum [10,98
Maximum |4 Maximum|2l] Maximum|25,?3 |Bi-quadlalic polynomial j
Interval |1 Interval |5 Interval |1,481 Resolution
] —
* Linear ¢ Log * Linear T Log 7
[ Grid lines [ Grid lines
Format |A |3 Format
’_ ’_ ’? ’?  3-D Surface
Type " 3-D Points
" 3-column data ¢ 2-D table data ¥ Include legend UK X Cancel ‘

Figure 4.4.8 — Dialog window for X-Y-Z Color Bands Plot.

Figure 4.4.9 shows colour band graphs that may be obtained from the Arrays Table. You may
produce different graphs for different instants of time (by using the respective Arrays Table).
In the case of Figure 4.4.9, all the graphs are valid for a time of 25 minutes.

We should note that, because the colour bands and isothermal lines are obtained from the
calculated node temperatures, there is the need perform an interpolation with the Arrays Table
values; therefore, if the number of points in the Arrays Table is limited, a crude representation
will be obtained. This may be noticed when comparing the graphs in Figure 4.4.9(a) and
4.4.9(b). Figure 4.4.9(a) was obtained with the Arrays Table from Figure 4.4.6, using the 25
previously calculated nodes, while Figure 4.4.9(b) was obtained with an extended number of
nodes of 50 x 50 = 2500 nodes. The isothermal lines are significantly different, particularly
near the electric wire region.

As requested, the influence of changing the internal temperature to 15°C, while maintaining the
same external temperature and initial glass temperature at 5°C, was analysed. It is very simple
to introduce this modification in the problem: it is simply needed to change T;,,; in the Equations
Window to 15°C, maintaining all the other values. Figure 4.4.10 presents the time evolution of
several temperatures in the glass. The evolution is similar to Figure 4.4.7, but, as the glass looses
less heat, the temperatures are higher: the maximum temperature is now slightly above 28°C,
and the minimum is above 13.5°C.
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-

o

Figure 4.4.9 — Temperature colour bands for the car glass heating example: (a) using 25 nodes; (b) using 2500
nodes; (c) composition of 4 symmetrical regions in the glass.

-
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Figure 4.4.10 — Time evolution of temperatures in different nodes/volumes when T;,,; = 15 °C.
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4.5 Dynamic cooling of a concrete beam

To increase the strength of concrete beams, they are

TBX 'h(’x H -
o subjected to a long heating cycle, up to a temperature

T....he  OF 80°C. Consider a long concrete beam, with a

© section of 27 x 100 cm, initially at a uniform
; 100 cm temperature of 80°C. The beam is cooled to ambient
Texrc;heft 2 air at T,,,=20°C, with a heat transfer coefficient

het=20 W/m?K in all surfaces, except the base,
which can be considered insulated. The concrete has
the following properties: k=1.2 W/m°C, p=2300
Figure 4.5.1 — Concrete beam cooling. kg/m?, cp= 880 J/kgK.

Obtain the temperature distribution in the beam section after 1 hour, 2 hours and 4 hours of
cooling. Use a grid with Ax=3 cm and Ay=4 cm. Calculate the evolution of the heat transfer rate
to the outside.

The beam will be discretised in 2D, since its length is very large, and therefore the temperature
is assumed to vary only in the section. Due to the symmetrical conditions, one half of the section
could be considered, with 13.5 cm along the horizontal direction, and 100 cm along the vertical
direction. However, we shall use the full width of 27 cm, with a grid with 10 X 26 nodes, with
Ax=3 cm and Ay=4 cm.

The discretised equations are very similar to those in section 4.4: one for the internal nodes,
equal to equation (4.4.1) for 8 x 24 nodes, one for each of the boundaries excluding the corners
— bottom (8 nodes), top (8 nodes), left (24 nodes) and right (24 nodes) surfaces — and one for
each corner, with smaller volume sizes. The top, left and right surfaces have a heat transfer
condition, while the bottom surface has no heat transfer (adiabatic).

The first index (i) is used for y (vertical) and the second index (j) is used for x (horizontal).
Figure 4.5.2 presents the Formatted Equations Window and Figure 4.5.3 the Equations
Window. Besides the temperatures, heat rate array variables — Qop [j1, Qrefelil, Qrigne[il —
were defined to calculate the transfer rates to the outside in every element. Then they are
summed to obtain the total surface transfer — Q.op corars Qrese rotars Qrigntrorar — and the 3 are
finally added to obtain the total heat transfer rate, Q..

The Parametric Table (“Table 1) expresses the different time steps (one Run for each time
step), starting with all temperatures equal to 80°C in the first row (initial condition), and
contains the calculation results. A time step of 60 s was used in the simulations. As array
variables were used for the temperature and heat rates, those results are also available in the
Arrays Table, for the final simulation/Run. As the situation at 3 different moments is wanted (1
hour, 2 hours and 4 hours), the Parametric Table can be run 3 different times, stopping in each
time at the required moment. Then, the Arrays Table will contain the wanted temperature and
heat rate values, that will be used to obtain graphical representations of the temperatures in the
3 different moments.
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Figure 4.5.2 — Formatted Equations Window for the concrete beam cooling example.
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Equations Window [ =0 S|
—

"2D temperature distribution in a concrete beam section in dynamic conditions” ~
"Insulated bottom and other boundaries with convection; initial T = 80°C"

Rx=10 "Number of nodes along X - in 27 cm”
Ny=26 "Number of nodes along Y -in 1m"
Lx=0.27 "metres"

Ly=1 "metre"

DELTAx=Lx/(hx-1)

DELTAy=Ly/(Ny-1)

DELTAt=60 "s"

row=time/DELTAt+1

hour=time/3600

rho=2300

c_p=880

k=12

h_ext=20

T_ext=20

"balance of internal nodes - i=2 to Ny-1; j=2 to Nx-1"
duplicate i=2;Ny-1
duplicate j=2:Nx-1
T_old[i;j]=TABLEVALUE (Table 1°; row-1:#T[i:]])
tho*c_p*DELTAX"DELTAY(T[i-j|-T_old[i:]VDELTAt=k/DELTAX"DELTAY*(T[i:j-1]+T[i:j+ 1]-2T[i-j]}+ K DELTAY*DELTAR(T[i-1 ]+ T[i+1:{]-2°T[i-il)
end
end

“Bottom and top except corners”

duplicate j=2;Nx-1
T_old[1j]=TABLEVALUE (Table 1" row-1#T[1]])
T_old[Ny;J]=TABLEVALUE (Table 17 row-1#T[26]]) "needs defining 26, not Ny"
tho’c_pDELTAX"DELTAy/Z(T[1;j]-T_old[1.jVDELTAt=K/DEL TAx"DELTAY/2*(T[1,j-11+ T[1;j+1]-2*T[1j]}+/DELTAy DELTAX*(T[Z,FT[1.j]) "Bottom - i=1, except j=1 and Nx"
thoc_p DELTAX"DELTAY/2*(T[Ny,j}-T_old[My;j]VDELTAt=k/DELTAx"DELTAy/2" (T[Ny.j-1]+ T[Ny;j+ 1]-2 T[Ny ]}+ K/DELTAy"DELTAx(T[Ny-1,j]-T[Nyj]}-h_ext DELTAX"(T[Ny:j-T_ext) "Tap - i=Ny, except j=1 and Nx"
Q_dot_top[j]=h_ext*(T[Ny:j]-T_ext)"DELTAx

end

"Left and right except comers”

duplicate i=2;Ny-1
T_old[i; 1]=-TABLEVALUE (Table 17 row-1:#T[i;1])
T_old[i;Nx]=TABLEVALUE (Table 1"; row-1:#T[i;10]) "needs defining 10. not Nx"
tho*c_p*DELTA}/2*DELTAY*(T[i;1]-T_old[i; 1]VDELTAt=k/DELTAy*DELTA/2*(T[i-1; 1]+ T[i+1;1]-2*T[i: 1])+ k/DELTAx*DELTAy* (T[i: 2} T[i: 1]1-h_ext*DELTAY*(T[i:1]-T_ext) "Left - j=1, except i=1 and Ny"
tho*c_p*DELTA)/2*DELTA*(T[i:Nx]-T_old[i:Nx]VDELTAt=k/DELTAy* DELTAx/2* (T[i-1;MNoc]+ T[i+1;Nac-2*T[i: Noc]+ k/DELTAx*DELTAy* (T[i: Na-1]-T[i; Max])-h_ect “DELTAy*(T[i:Nx]-T_ext) "Right - j=Mx, except i=1 and Ny"
Q_dot_left[i]=h_ext*(T[i:1]-T_ext)'DELTAy
Q_dot_right[i]=h_ext*(T[i;Nx]-T_ext)'DELTAy

end

"bottom-eft corner: 1.1"
T_old[1:1]=TABLEVALUE (Table 1; row-1:#T[1:1])
rho*c_p*DELTAX/Z*DELTA/2*(T[1:1]-T_old[1:1]/DELTAt=k/DELTAy*DELTA2*(T[2:1]-T[1:1]}+k/DELTAx*DELTAY/2*(T[1:2]-T[1:1])-h_ext DELTAy/2*(T[1:1]-T_ext)
Q_dot_left[1]=h_ext*(T[1;1]-T_ext)'DELTAy/2

tnprle& comer: Ny, A
T_old[Ny;1]=TABLEVALUE (Table 1; row-1;#T[26:1]) "needs defining 26, not My"
tho*c_p*DELTAK/2*DELTA/2*(T[Ny;1]-T_old[Ny: 1]/DEL TAt=k/DEL TAy*DELTAx/2*(T[Ny-1:1]-T[Ny:1]}+ k/DEL TAX*DEL TAy/2*(T[My: 2} T[Ny; 1])-h_ext*(DELTAy/2+ DELTAx/2)*(T[Ny-1]-T_ext)
Q_dot_top[1]=h_ext*(T[Ny:1]-T_ext}"DELTAx/2
Q dot leftfMy]=h ext*(T[Ny:1]-T ext)*DELTAv/2

"bottom-right comer: 1,Mx"
T_old[1;Mx]=TABLEVALUE (Table 1"; row-1:#T[1;10]) "needs defining 10, not Nx
rho*c_p*DELTAWZ*DELTAY/2*(T[1:Nx]-T_old[1:Nx])DELTAt=k/DELTAy*DELTAx/2*(T[2:Nx]-T[1:Nx]}+ k/DELTAx* DELTAy/Z* (T[1:Moc-1]-T[ 1 Mx])-h_esxt “DELTAY/2*(T[1:2Mx]-T_ext)
Q_dat_right[1]=h_ext*(T[1:Nx]-T_ext)'DELTAy/2

mprrlght comer: Ny, X"
T_old[Ny:Nx]=TABLEVALUE (Table 1"; row-1:#T[26:10]) "needs defining 26,10, not Ny, Nx"
thoc_p"DELTAX/2=DELTA/2*(T[Ny:Nx]-T_old[Ny:hx])/DELTAt=k/DELTAy*DELTAx/2*(T[Ny-1:Mx]-T[Ny:Nx] j+k/DELTAx*DELTAy/2*(T[Ny: Nx-1]- T[Ny :Nx]-h_ext*(DELTAy/2+DELTAx/2) [T[Ny:Nx]-T_ext)
Q_dot_top[Nx]=h_ext™(T[Ny:Mx]-T_axt)"DELTAx/2
Q_dot_right[Ny]=h_ext(T[Ny:Nx]-T_ext)*DELTAy/2

"Inote: to have a correct graph from the arrays table order the columns in the arrays table”

“calculation of heat transfer rate in the top face”
Q_dot_top_tot=SUM(Q_dot_topl[j];j=1:Nx)
“calculation of heat transfer rate in the left face”
Q_dot_left_tot=SUM(Q_dot_left[i];i=1;Ny)

"calculation of heat transfer rate in the right face”
Q_dot_right_tot=SUM(Q_dot_right[il:i=1:Ny)

“calculation of total heat transfer rate to the outside”
Q_dot_ext=Q_dot_top_tot+Q_dat_lef_tot+Q_dot_right_tot

EU [Line32 Chan201 | Wrep:On |Insert Caps Lock: Off | 51 C kPa k) mass deg | Warnings: On | Unit Chic On  Complex: Off | Syntax Highlight: Off

Figure 4.5.3 —Equations Window for the concrete beam cooling example.

Figure 4.5.4 presents temperature profiles in the 3 moments. They were obtained by choosing
to represent Color Bands (after Plots — New Plot Window — X-Y-Z Plot, choosing Table —
Arrays Table, 2-D table data, Color Bands). At any moment, the maximum temperature in the
beam occurs at the middle of the base, and the minimum temperatures in the top corners. After
1 hour of cooling the maximum temperature is still 78°C and the minimum is 35°C; after 2 hours
the maximum temperature is 72°C and the minimum 30°C; after 4 hours the maximum
temperature is 60°C and the minimum 25°C. By choosing “Gradient Plot” one can also represent
the heat flux vectors, which obviously are normal to the isothermal lines — see Figure 4.5.5.

A 3D type graph can be obtained, by choosing “3-D Surface”, and different options of scales
and resolutions are available — see Figure 4.5.6. The resulting graph is generated by EES and
may afterwards be rotated, allowing different perspective views of the dependent variable
(temperature, Z) as a function of X and Y — see Figures 4.5.7 and 4.5.8.

Figure 4.5.9 represents the time evolution of the total heat transfer rate from the beam to the
outside, varying between 2600 W and 700 W after 4 hours. After 2 hours the transfer rate is
already down to about 1000 W.
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Figure 4.5.4 — Temperature profiles during cooling: (a) after 1 hour; (b) after 2 hours; (c) after 4 hours.
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Figure 4.5.5 — Temperature colour bands and heat fluxes after 2 hours of cooling.
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Figure 4.5.6 — Dialog window for X-Y-Z 3-D Surface Plot.
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Figure 4.5.8 —Two views of a 3-D Surface Plot of temperature distribution after 4 hours.
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Figure 4.5.9 — Time evolution of the total heat transfer rate from the beam.
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4.6 Dynamic heat transfer in a roof solar pond
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Figure 4.6.1 — Roof solar pond: (a) Summer operation; (b) Winter operation.

The above figure represents the operation of a roof pond, during the Summer and Winter
seasons. The water is contained in a transparent plastic bag that does not affect heat transfer but
prevents water evaporation.

In Summer — Figure 4.6.1(a) — at night the water looses heat to the outside, cooling the concrete
slab (ceiling), which allows the removal of heat from the indoor space. During the daytime an
insulating cover is placed over the water surface, limiting the transfer of heat with the outside
— either the absorption of solar radiation, or conduction heat gains — so that the water is kept
colder than the slab, allowing further indoor space cooling.

In Winter — Figure 4.6.1(b) — during the daytime the water receives solar radiation; in spite of
the heat losses to the outside, the concrete slab (ceiling) is heated, which allows heating the
indoor space. During the nighttime an insulating cover is placed over the water surface, limiting
the transfer of heat with the outside, allowing further indoor space heating.

Consider a concrete slab and ceiling with 20 m? and a thickness of 15 cm (p=2300 kg/m?,
cp=880 J/kgK, k=1.2 W/mK) and a water pond with the same area and 20 cm thick (p,=1000
kg/m?3, ¢,=4190 J/kgK). The convection coefficient to the outside air is equal to 20 W/m?K
(constant) and the water emissivity is equal to 0.9 (equal to the absorption coefficient). The
emissivity of the ceiling surface is equal to 0.9. Assume the following conditions for Summer
and Winter operation:

e Summer: indoor space at a constant temperature of 24°C, with a variable heat transfer
coefficient to the ceiling; the temperature of the water pond may be considered as
uniform (due to convective currents), and the slab temperature varies along its thickness;
in the slab upper surface the convective coefficient to the water also varies; during the
night, with clear sky conditions, the effective sky temperature (for radiation exchanges)
may be obtained with Tsy = 0.0552 Tamp'®, with temperatures in K;

e Winter: indoor space at a constant temperature of 20°C, with a variable heat transfer
coefficient to the ceiling; consider the variation of the water pond temperature and the
slab temperature along their thicknesses; the effective sky temperature (for radiation
exchanges during the day) may be obtained with Tsky = Tamb - 6.

Use a numerical model and EES to obtain the variation of the slab temperature and water
temperature, during one Summer day (24 hours) and one Winter day (24 hours), with the
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climatic data in the following tables. Use a time step At=300 s, and consider that the cover is
used between 6:00 and 20:00 in Summer, and between 17:00 and 8:00 in Winter. Analyse the
cover schedule effect. Assume that, when used, the cover is a perfect thermal insulator.
Calculate also the energy transferred with the indoor space during the two 24-hour periods.

SUMMER - hour 1 2 3 4 5 6 7 8 9 10 11 12

Tam (°C) 176 [ 172 [ 17.2 [ 166 [ 16.0 | 154 [ 152 | 17.2 [ 196 [ 222 | 236 | 254
Lsoy (W/M?) 0 | 0 [ 0 | o | o | 39 [206]| 408 | 594 | 747 | 861 | 897
SUMMER -hour | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24/0
Tamn (°C) 27.0 | 290 [ 31.6 | 320 [ 332 [ 33.0 [ 308 [ 27.0 | 24.8 | 240 [ 220 | 180
Lo, (W/m?) 889 | 831 | 725 | 569 | 367 | 169 | 150 | 58 | 0 | 0 | O 0
WINTER - hour 1 2 3 ] 4 | 5 6 | 7 ] 8 | 9 | 10 ] 11 | 12
Tam (°C) 84 | 82 [ 82 | 78 [ 70 [ 62 |52 [ 71 [100]112[128] 126
Tsor (W/m?) 0 | 0 | 0 | o | 0 | 25 | 142 | 417 | 450 | 711 | 664 | 606
WINTER -hour | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24/0
Tamn (°C) 140 [ 148 | 156 | 164 [ 172 [ 16.2 [ 126 | 116 | 110 [ 110 [ 106 | 84
Iso1 (WMD) 522 | 214 | 35 | 286 | 58 | 0 | 0 | 0 | 0 | 0 | © 0

Two different numerical models will be considered, due to the different climatic data, the
different operating strategies, and the different thermal behaviour of the pond water in the 2
seasons (Summer and Winter).

In Summer, the slab will be warmer than the water, with the water receiving heat from the slab
below it, which creates upward convective currents that tend to uniformize the water
temperature. Therefore, a global model will be used for the water pond.

In Winter, the pond water will be warmer that the slab, and therefore no upward currents will
occur; the water will be still, as the warmer elements will be on the top and the colder elements
on the bottom. Thus, a distributed model, similar to the slab one, will be used in the water,
taking into account its thermal storage capacity, and heat conduction, from the top to the bottom.

The 2 models, and respective results, will be presented separately, starting with the model for
Summer operation.

4.6.1 Summer operation

The model will lead to the calculation of slab temperatures and water temperature, over time.
Five volumes will be considered in the slab, together with a global water temperature. Figure
4.6.2 represents the temperatures and heat transfer rates.

Torey Tamp
(@]

Qrad,sky Qconv,amb

water pond |

concrete slab

Figure 4.6.2 — Temperatures and heat transfer rates in the roof solar pond — Summer operation.
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The discretised equation for the water global model, using the implicit formulation, is:

Tt A Ty t+AL (AL t+A S t+AL st+At T
MWCP'W = At == hW (TS - TW )A - [(Qconv,amb + Qrad,sky)] (46.1)
where
)eammamp = Rexe (THHAT = Tiri') A (4.6.2)
L A 4 A 4'
Qtaity = ew o (TEH" — T 4 463

To implement the model equations in EES, the cover condition ([ ]*) will be defined with a
FUNCTION or PROCEDURE, using a multiplying factor f.,,., that is either O (cover on) or 1
(cover off).

Note that in equation (4.6.1) no water evaporation was considered, due to the plastic water
container, which has no further thermal influence.

For the slab internal volumes (i = 2 to 4) the following discretised equation applies:

t+At_Tt)

At A
while for the volume in contact with water:

Ax (Tt+At_Tt) k A A
ps s 2 5 s ( t+At — T5t+ t) _ h‘a/'l'At(TSt'l' t _ T‘f/'l'At) (465)

The volume in contact with the indoor space will receive heat by convection (from the indoor
air), but because the ceiling surface will have a significantly lower temperature than the other
indoor surfaces, the thermal radiation effect will be considered. A detailed model would need
to consider the temperatures of the different indoor surfaces, and respective view factors, but
we will simply assume that all the surfaces except the ceiling will have the same temperature
as the indoor air, in this case 24°C. Then, we may use a simple equation to include the thermal
radiation effect, and have

Ax (Tf*-1f) _ t+At t+At t+At t+At
Ps Cps AL = A_xss (TZ -T; ) + hing (Tint —-T; ) +

4
+&0 (Tint‘L — TiHat ) (4.6.6)

Equations (4.6.1) to (4.6.6) allow calculating the 6 unknown temperatures in each time step.
The convective heat transfer coefficients will be calculated in every step with the EES heat
transfer database, as a function of the temperature differences (free convection). The heat rate
removed from the space (Q;,,;) is equal to the sum of the convective and radiative terms in
equation (4.6.6), multiplied by the ceiling area.

Figure 4.6.3 shows the Equations Window for the Summer model. The values of the climatic

variables were defined in a Lookup Table (“Lookup 1) and interpolated to obtain the relevant

values, step after step. The Parametric Table (“Table 1”’) — see Figure 4.6.4 — starts with row/run

number 1, with initial temperatures that were obtained after a few daily cycles, assuming the

same day is repeated over and over. The f,,,., factor was defined in Procedure COVER and

the convective coefficients for horizontal surfaces were obtained with fc_plate_horizontall,
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from the EES heat transfer database, which is valid for an horizontal surface hotter than the
above fluid (case of h,,), or an horizontal surface colder than the fluid below (k).

Equations Window EI@
L
"Roof pond - Summer - July day”

Procedure cover (hourf_cover) "factor=0 from 6 to 20"
If (hour<6) OR. (hour=20) Then
f_cover=1 "cover off"
Else
f_cover=0 "cover on”
Endif
End

A_ceil =20 [m2]"roof pond, slab and ceiling area”
V_w=A_ceil*0,2 [m3] "water volume in m3"
L_slab=0.15 [n]

c_p_w=4190 [JkgK]

tho_w=1000 [kg/m3]

epsilon_w=0,9

c_p_slab=880 [J/kgk]

rho_slab=2300 [kg/m3]

k_slab=1.2 [W/mK]

epsilon_slab=0,9

T_int=24 [*C]

h_ext=20 [W/m2K]

DELTAt =60%5 [s] "5 minutes"

hour=time/3600

row="1+time/DELTAL
T_amb=interpolate2(July:T_amb"'hourhour=haur)
T_sky=0,0552"T_amb+273,15)"1,5-273,15 "in *C"

"water balance; implicit method”
Call COVER (hourf_cover)
tho_w*V_w*c_p_w*(T_w-T_w_old)/DELTAt=h_w*A_ceil*(T[5]-T_w)-f_cover(h_ext*A_ceil*(T_w-T_amb)+epsilon_w*sigma#"A_ceil*((T_w+273,18)"-(T_sky+273,15)"4))
T_w_old=tablevalue(Table 1 row-1.#T_w)
"slab - 5 volume elements; implicit method; 1 - interior; 5 - interface slab/water”
DELTAx=L_slab/4
Duplicate i=2:4
rho_slab™DELTAx c_p_slab™(T[i]-T_old[i]VDELTAt=k_slab/DELTAX™(T[i+1]+T[i-1]-27T[i])
T_old[i]=tablevalue(Table 1" row-1#T[i])
End
tho_slab*DELTAx/2%c_p_slab*(T[1]-T_old[1]¥DELTAt=h_int*(T_int-T[1]}+epsilon_slab*sigma#*((T_int+273,15)M-(T[1]+273,16)4)+k_slab/DELTAx*(T[2]-T[1])
Call fc_plate_horizontal1(Air; T[1];T_int;100; L_conv:h_int; Musselt_int: Ra_int)
L_conv=A_ceil/sqrt(A_ceil)
T_old[1]=tablevalue(Table 1’ row-1.#T[1])
tho_slab*DELTAx/2%c_p_slab*(T[5]-T_old[5]/DELTAt=k_slab/DELTAx*(T[4]-T[5])-h_w*(T[5]-T_w)
T_old[5]=tablevalue(Table 1’ row-1,#T[5])
Call fc_plate_horizontal1(Water", T[5]; T_w; 100; L_conv: h_w; Nusselt_w: Ra_ag)

"removal heat rate”
h_int_tot=h_int+epsilon_slab*sigma#*([T_int+273,15)4-(T[1]+273,15)4)/(T_int-T[1])
|Q_d0t_|nt=h_lnt_tot”([_lnt-TU]}”A_cen

EU |Line: 19 Char: 18 Wrap: On | Insert Caps Lock: Off | 5 CkPa k) mass deg | Warnings: On | Unit Chlke On  Complex: Off Syntax Highlight:On

Figure 4.6.3 — Equations Window for the roof solar pond example — Summer operation.

S parametric Table =N e =<

Table 1 |
< ™= ™= 4 ™s ™e Ly ™= ™s ™10 ™ [ [ [ [na B8 ™ ~
2.289 fime ‘ hour ‘ T1 T2 ‘ TS ‘ T4 ‘ TS ‘ Tw ‘ Qm( ‘ hw’ ‘ him ‘ hm(:tm ‘ Tarﬂb Tsky
[s] [°C] [°’C] [°C] [rCl [°C] [°C] W] Wim2K] | [Wim2K] | [Wim2K] [°’C] [°’C]

Run1 0 2135 20,75 2022 1973 19,23 19,05
Run2 300 008333 2135 20,76 2022 19.73 192 19.02 3999 1117 2272 7557 wer | 1032
Run 3 600 01667 21,36 20,76 2023 1972 19,18 18,99 3987 1126 227 7,555 1703 09854
Run 4 900 025 2137 20,77 2023 1972 19,15 18,96 3077 1134 2268 7,554 179 00383
Run 5 1200 03333 2137 20,78 2023 1971 19,13 18,03 3967 14,1 2267 7,552 1787 08912
Run 6 1500 04167 2138 20,78 2023 197 19,1 189 3057 1148 2265 7,55 1783 08441
Run 7 1800 05 2138 20,79 2024 19,69 19,07 18,88 3048 1154 2263 7,549 178 0,797
Run 8 2100 05833 21,39 20,79 2024 19,68 19,05 18,85 394 116 2262 7,548 17,77 0,75
Run 9 2400 08867 21,39 208 2024 19,67 19,02 18,82 3933 1165 2,261 7,546 1773 07029
Run 10 2700 075 214 208 2023 19,66 19 18,79 3926 17 2,259 7,545 177 06558
Run 11 3000 08333 214 20,81 2023 19,65 18,97 1876 3919 175 2,258 7,544 1767 06088
Run 12 3300 09167 21,41 20,81 2023 19,64 18,05 1873 3014 1179 2257 7,543 1763 05617
Run 13 3600 1 2141 20,81 2023 10,62 18,02 187 3800 1184 2256 7,543 176 05146
Run 14 3900 1,083 21,41 20,81 20,22 1961 18,89 18,67 3005 1188 2256 7,542 1757 04676
Run 15 4200 1167 21,41 20,81 20,22 196 18,87 18,64 3901 19,1 2255 7,541 1753 04205
Run 16 4500 125 2142 20,81 2022 1958 18,84 18,62 3808 1195 2,254 7,541 175 03735
Run 17 4800 1333 2142 2081 2021 1957 18,82 18,59 3806 1198 2,254 7,541 1747 03264
Run 18 5100 1417 2142 20,81 2021 1955 18,79 1856 3804 1202 2254 7,54 1743 02793
Run 19 5400 15 2142 20,81 202 1954 18,76 1853 3803 1205 2254 7,54 174 02323
Run 20 5700 1583 21,42 20,81 20,19 1953 18,74 185 3893 1208 2253 7,54 1737 01853
Run 21 6000 1,667 21,42 20,81 20,19 1951 1871 18,47 3893 1211 2254 7,54 1733 01382,

Figure 4.6.4 — Parametric Table initial rows for the roof solar pond example — Summer operation.
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Figure 4.6.5 represents the evolution of temperatures and heat removal rate during the Summer
day. Note that the slab is always warmer than the water, in particular Ts > T,,, which means
that the water pond removes indoor heat during the whole 24-hour period. The ceiling (T;) has
a very stable temperature, with a maximum of 21.4°C and a minimum of 20.8°C. The heat
removal rate varies from 389 to 490 W, with a maximum value at about 10:30.
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Figure 4.6.5 — Evolution of water and slab temperatures and removed heat — Summer operation.

Figure 4.6.6 shows the evolution of the variable heat transfer coefficients. The water convection
coefficient has a larger variation (87 to 127 W/m?2K), and the indoor coefficient is very stable;
its value includes the convective and radiative contributions, with the radiative coefficient
representing about twice the convective one.
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Figure 4.6.6 — Evolution of water and indoor heat transfer coefficients — Summer operation.

As can be seen in Figure 4.6.5, the water warms up during the daytime and is cooled at night,
reducing its temperature by about 2.5°C between 23:00 and 6:00. This reduction is mostly due
to the radiative cooling effect, which is a consequence of the low sky temperatures under clear
sky conditions. Figure 4.6.7 compares the ambient air and sky temperatures, under those
conditions.
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Figure 4.6.7 — Comparison of ambient air and sky temperatures with clear conditions — Summer operation.

Discontinuities in the water temperature evolution occur when the cover is removed and placed
(at 6:00 and 20:00). It is noticeable from Figure 4.6.5 that after removing the cover at 20:00,
the water still continues to heat up, due to the high outdoor air temperatures. During the period
from 20:00 to 24:00 it would be better to keep the water covered, not increasing so much its
temperature and improving the overall thermal performance (heat removal). This can be seen
in Figure 4.6.8, which represents the evolutions when the cover is kept between 6:00 and 24:00.
Those results were obatined by changing the cover schedule in the COVER Procedure of Figure
4.6.3. The minimum water temperature is now 16.8°C, and the maximum 18.4°C. The heat
removal rate varies now from 440 to 522 W, which represents a significant increase by just
adjusting the cover schedule. The cover could also be placed only after 6:00, as up to 7:00 the
ambient and sky temperatures are still falling; but after 7:00 they will start to rise, and also solar
radiation will start to affect the water temperature.
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Figure 4.6.8 — Evolution of water and slab temperatures and removed heat with modified cover schedule — Summer
operation.
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4.6.2 Winter operation

The Winter operation model is based on the schematic discretisation of Figure 4.6.9. Besides
the 5 nodes along the slab thickness (Ax; = 3.75 cm), the water will also be divided with 5
equally spaced nodes (Ax,, = 5cm). As heat is conducted in the downward direction, no
convection currents will occur in the water; it will therefore be treated as a solid material. The
interface between slab and water corresponds to slab node 5 and water node 1; Figure 4.6.9(b)
shows the interface volume that includes 2 different materials.

[Cl)l abs ”
Tsiey 3 Tamp

o o
Qraasky Ty s Qconv,amp
1) -
5 Ax
water pond | Ts — Tw1 I Ax,/2 w
—Tﬂyw—.
concrete slab e "& (4 by ST h M'-J Axg/2
Ax,
o) v
a b

Figure 4.6.9 — Discretisation of the roof solar pond system — Winter operation: (a) temperatures and heat transfer
rates; (b) interface (slab/water) volume.

The equations for slab nodes T, (4.6.6) and T, to T, (4.6.4) remain valid. For the interface
volume (Ts = T,,;) we may write

Axy, (T§+At—T§) ks T A t+At kw (mt+at t+At
(pscps +pw pw T, ) ( _TS )+_W( _TS )

(4.6.7)
For water internal nodes (i = 2 to 4):

(THM—T‘; kw t+At t+At t+At
Pw Cpw Xy ———— = (T —1 F Twiv1 — 2Ty (4.6.8)

and for the upper node (T, 5):

Ax, Tt+A ~TL

Do Cpy . _ kw( t+At t+At) +

t At t At t At t+At
+fcover [aw sol — ext( + ar-;b —&w 0 (T y Ts]:-y )] (4.6.9)

where f,,er Will be equal to 0 when the cover is on (nighttime) and to 1 when the cover is off
(daytime).

It is a set of 9 equations, plus those that define h7 as a function of (T{**— T;,.), and the
climatic variables (I5o;, Tamp, Tsky)-

Figure 4.6.10 shows the Equations Window for the Winter model. The hourly values of the
climatic variables for the Winter day were defined in the “Lookup 1 Table, to be interpolated
and obtain the relevant values, step after step. As before, the Parametric Table (“Table 17’) starts
with row/run number 1, with initial temperatures that were obtained after a few daily cycles,
assuming the same day is repeated over and over. The f,,., factor was defined in the Procedure
COVER, so that the pond is covered at night and receives solar radiation during the daytime.
The convective coefficient for indoor air (h;,;) was obtained with fc_plate_horizontal2, from
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the EES heat transfer database, as now the horizontal surface (ceiling) is hotter than the fluid

below.
Equations Window E@
-
"Roof pond - Winter day” ~

Procedure cover (hour-f_cover) "from 8 to 17 cover off”
If (hour<8) OR (hour=17) Then/
f_cover=0 "cover on"
Else
f_cover=1 "cover off”
Endif
End

A_ceil =20 [m2]"roof pond, slab and ceiling area”
L_slab=0.15 [m]

L w=0,20 [m]
c_p_w=4190 [JkgK]
rho_w=1000 [kg/m3]
k_w=0.6 [W/mK]
epsilon_w=09
c_p_slab=880 [J/kgK]
rho_slab=2300 [kg/m3]
k_slab=1,2 [W/mK]
epsilon_slab=09
T_int=20 [*C]
h_ext=20 [W/m2K]

DELTAt =60%5 [s] "5 minutes”

hour=time/3600

row="1+time/DELTAt
T_amb=interpolate2(Winter'; T_amb’, 'hour’ hour=hour)
|_sol=interpolate2(Winter;Rad Sol Hor';hour';hour=hour)
T_sky=T_amb-6 "in °C"

"slab - 5 volume elements; implicit method; 1 - interior; 5 - interface slab/water”
DELTAx_slab=L_slab/4
Duplicate i=2;:4
rho_slab*DELTAx_slab*c_p_slab*(T[i]-T_old[i]\DELTAt=k_slab/DELTAx_slab*(T[i+1]+T[i-1]-2*T[i])
T_old[i]=tablevalue(Table 1’ row-1:#T[])
End
rho_slab*DELTAx_slabi2*c_p_slab*(T[1]-T_old[1]¥DELTAt=h_int*(T_int-T[1]}+epsilon_slab*sigma#*((T_int+273,16M-(T[1]+273.15)M}+k_slab/DELTAx_slab*(T[2)-T[1])
Call fc_plate_horizental2(Air; T[1]:T_int:100: L_conv:h_int; Nusselt_int; Ra_int)
L_conv=A_ceil/sqrt{A_ceil)
T_old[1]=tablevalue(Table 1. row-1#T[1])
“interface volume: T_w[1]=T[5]"
(rho_slab*DELTAx_slab/2*c_p_slab+rho_w*DELTAx_w/2*c_p_w)*(T[5]-T_old[5])/DELTAt=k_slab/DELTAx_slab*(T[4]-T[5])+k_w/DELTAx_w*(T_w[2]-T[5])
T_old[5]=tablevalue(Table 1 row-1#T[5])
"water - 5 volume elements; implicit method; 1 - water interface; 5 - external surface”
DELTAx_w=L_w/4
Duplicate i=2;4
rho_w*DELTAx_w*c_p_w*(T_w(i]-T_w_old[i]yDELTAt=k_w/DELTAx_w*(T_w[i+1]+T_w[i-1]-2*T_w[i])
T_w_old[i]=tablevalue{Table 1", row-1.#T_w{i])
End
T_w[1]=T[5]
T_w_old[1]=tablevalue(Table 1; row-1#T_w[1]}
Call COVER (hourf_cover)
rho_w*c_p_w*DELTAx_w*(T_w[5]-T_w_old[5])/DELTAt=k_w/DELTAx_w*(T_w[4]-T_w[5]}+f_cover*{epsilon_w*|_sol-h_ext*(T_w[5]-T_amb)-epsilon_w*sigma#*((T_w[5]+273,156)4-(T_sky+273,15)"4))
T_w_old[5]=tablevalue(Table 1" row-1:#T_w[5])
“removal heat rate”
h_int_tot=h_int+epsilon_slab*sigma#*((T[1]+273 15)4-(T_int+273, 154 )/(T[1]-T_int}
Q_dot_int=h_int_tot*(T[1]-T_int}"A_ceil

EU |Line:26 Char 15 Wrap: On | Insert Caps Lock: Off |51 CkPakmassdeg | Warnings: On | Unit Chike On Complex: Off Syntax Highlight:On

Figure 4.6.10 — Equations Window for the roof solar pond example — Winter operation.

Figure 4.6.11 represents the ambient air and sky temperatures, and incident horizontal solar
radiation, during the Winter day.
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Figure 4.6.11 — Ambient air and sky temperatures, and incident solar radiation — Winter operation.
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Figure 4.6.12 represents the evolution of temperatures and heat input rate during the Winter
day. Note that the slab and lower water volumes have very stable temperatures, with the ceiling
temperature (T;) varying between 21.6 and 21.7°C. As a consequence, the heat input rate (Q;,;)
varies only between 176 and 181 W. The indoor heat transfer coefficient is mostly due to
radiation, as free convection is not significant with a warmer ceiling, with a total of about 5
W/m2K.
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Figure 4.6.12 — Evolution of water and slab temperatures and input heat — Winter operation.

There is a large temperature swing in the top water volume during the daytime, due to the
absorption of solar radiation. The minimum top water temperature is equal to 24.2°C, and the
maximum (at 12:30) is 30.3°C. Because of the water being still and its low thermal conductivity,
it is difficult to conduct heat to the other water layers and slab; this means that a large part of
the solar gains are lost again to the outside. It would be better to increase the heat transfer to
the lower depths of water, by agitating it. If a water mixing or stirring device was used, then the
water temperature would (ideally) be uniform. To assess this effect, the model was adapted,
becoming similar to the Summer one (global water temperature). The differences lay on the
climatic data, the cover schedule, and the use of the function fc_plate_horizontal2, instead of
fc_plate_horizontall, for the water free convection coefficient between the water and the slab,
due to the water being warmer than the slab; of course, the stirring would increase the
coefficient, compared to pure free convection, so this is a conservative value. Figure 4.6.13
shows the new simulation results.
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Figure 4.6.13 — Evolution of mixed water and slab temperatures and input heat — Winter operation.
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As Figure 4.6.13 shows, more solar gains are now transmitted by conduction to the slab, and
the different slab volumes have larger temperature swings, with higher temperatures. The
indoor heat input would now be much larger, varying between 315 (at 11:00) and 376 W (at
17:00). Therefore, even a slight agitation of the water (if not ideal) will be beneficial to increase
the heating performance of the roof solar pond.

Figure 4.6.14 represents the water free convection coefficient and the total (radiation and
convection) indoor heat transfer coefficient. They are much lower than the Summer operation
values, due to the different heat flow direction. The water coefficient is more stable than in
Summer, around 20 W/m?K, increasing during the daytime when the temperature difference is
higher. The indoor coefficient is almost constant, at 5.5 W/m?K, and most of it due to radiation.
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Figure 4.6.14 — Evolution of mixed water and indoor heat transfer coefficients — Winter operation.

4.7 Heat transfer in a laminar flow in a tube

r
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Figure 4.7.1 — Laminar flow in a tube.

Consider a laminar flow of water in a 25 mm diameter tube, with a length of 10 m. The velocity
profile at the tube inlet is developed, with a velocity at the axis of 6.5 cm/s. The inlet
temperature is equal to 80°C (for all values of r).

The tube wall looses heat to the outside air at 20°C, with an outside heat transfer coefficient of
20 W/m?K. Using EES with an appropriate grid, neglecting viscous dissipation and conduction
in the wall (negligible thickness), obtain the flow temperature distribution and the evolution of
the convection heat transfer coefficient along x (calculated after obtaining the fluid temperature
T(r,x).
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Figure 4.7.2 resumes the problem conditions. The flow is laminar: as the average velocity is
equal to vy,4, /2, the Reynolds number is Re=2225.

T, = 20°C

r © h,pe =20 W/m2°C

I~ . — r?
(f) D X ] " Vx (}") = Vmax 1- 72
/‘ = max

[T(r,x =0) = 80°C]

o~

Figure 4.7.2 — Conditions for the laminar water flow in a tube, with fully developed velocity profile.

To obtain the flow temperature distribution we need to discretise the domain. For that, we will
assume a 2D temperature distribution; as the circumferential conditions (around the tube section
perimeter) can be considered constant, the temperature will vary along the radius (r) and flow
length (x). We will then consider several volume elements with a ring shape, with a radial
dimension equal to Ar and a length equal to Ax. Figure 4.7.3 represents a general control
volume element, as well as the energy exchanges related to it.
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Figure 4.7.3 — General control volume element with radial and axial temperature variation and energy exchanges.
The flow section area for this elementary volume (identified with indices i, j) is:
AS; = ((r; + Ar/2)? — (r; — Ar/2)?) 4.7.1)

and its energy balance, neglecting viscous dissipation, states that the change in energy
transported by the flow leaving the volume is a result of the conductive heat exchanges with
the surrounding volumes:

pCpUx(T'i) ASL(TL’] - Ti,j—l) = Ak—rZT[ (T'i - %) AZ(Ti—l,j - Ti,j) +
+ Ak—rZT[ (T'i + %) AZ(Ti+1,j - Ti,j) + % (Ti,j—l + Ti,j+1 - ZTL,]) (4.7.2)

Note that when expressing the transported energy in and out of the control volume (i, j), the
flow temperatures at the borders are considered as the upstream values — see Figure 4.7.4.
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Figure 4.7.4 — General control volume (i, j) and upstream temperatures at flow inlet and outlet.
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Assuming a total of N,- nodes/volumes along r and N, along x, equation (4.7.2), together with
the expression for the parabolic velocity profile, are valid for nodes i = 2to N, — 1 and j =
2to N, — 1. For nodes (i, 1) — tube entrance — the temperatures are known (80°C).

The remaining nodes are those at the axis — (1,j = 2 to N, — 1) — those at the wall (N,,j =
2 to N, — 1) —and those at the exit section (j = N,). The volumes at the axis are small cylinders
with a radius Ar /2 — see Figure 4.7.5(a). The volumes at the wall have a radial length of Ar/2
and, as the node is located at the wall, the flow velocity in and out of the volume is zero; the
volumes also transfer heat to the outside (at 20°C) — see Figure 4.7.5(b). The exit volumes
(i =1to N,, N,) — see Figure 4.7.5(c) — are the only ones with a length of 4x/2, as the (i, 1)
entrance volumes are not used, because of the fixed inlet temperature; we have to distinguish
the (i = 2to N, — 1, N,) volumes and the 2 limits — (1, N,,) and (N,,, N,.).

: R Al N
A2 N, ,j| Qwall i, ;"\"x-l. ; | i, N,
@.’ Vmax v, =0 IAW2 ITNTF: Ymax Ax/2 conduction
Ax Ax _
xy, =L
a b C

Figure 4.7.5 — Boundary volumes: (a) at the axis; (b) at the wall; (c) at the tube exit.

At the exit volumes — see Figure 4.7.5(c) — the transport or convective energy term will use the
upstream temperature at the inlet (7; v —4), and the node temperature (T;y,) at the exit; and
because there are no nodes after (i, N,.), the conduction term at the exit section will be neglected
— this has a negligible effect in the energy balance, as the axial conduction has much less
importance (smaller gradients) than radial conduction.

The N, X N, equations (including the fixed inlet temperature) can be written in EES with
double index/array variables, as seen before. The grid size is more decisive in the radial
direction, because of the higher temperature gradients at the wall. Results will be presented for
a 21 X 41 grid, with a constant Ar = 0.625 mm and Ax = 250 mm. This grid has similar
results to a 41 X 81, or even larger grids, as Ar is already considerably small. Results for
smaller grids will later be compared.

Figure 4.7.6 presents the Formatted Equations Window, and Figure 4.7.7 the Equations
Window. Other array variables are the r[i] and x[j] coordinates, the wall surface temperature
(Ts[j]), the mixed mean or average temperature in the section (T, [j]) and the local convection
coefficient (h.yny[j]). The convection coefficient is calculated after the wall and flow section
average temperatures, as the heat flux at the wall divided by the temperature difference; and, as
the heat flux at the wall is equal to the heat flux transferred to the outside:

1 QWall — hext(Ts[j]_Text)
heomv Uil = GDI=R0D = (aveli-1oliD “.7.3)

The section average temperature, or mixed mean temperature, is calculated from the available
section temperatures:

_ Zziv:rl T; j(vA);
Tavelil = Zivzrl(VA)i

where A; is the i element of section area — same as 4S; in equation (4.7.1).

(4.7.4)

95

4.7 — Heat transfer in a laminar flow in a tube



4.7 — Heat transfer in a laminar flow in a tube

Chapter 4 — Distributed and combined modelling examples

At the end of the 2 windows, two EES procedures (pipeflow and pipeflowioca) from the heat
transfer database are called, to compare the calculated convective coefficients with the
theoretical available values.

Formatted Equations \E’@

LAMINAR WATER FLOW (Tin=80°C} IN TUBE (DEVELOPED VELQCITY PROFILE)

R = 00125 tube radius in meters
L = 10 tubelengthin meters
To = 80 inlettemperature

Tavet = Tin

Tew = 20

Mg = 20

Vesx = 0065 mis
p = plwater;T=T, P=100)
€, = Cp (water;T=Ty P= 100 ) - 1000

k = Kk (water;T=T,P=100)

2
Re = Vs - R
P = Visc (water ;1= T,,,P= 100
Nro= 21 R
NPo= e 1
Iy
Nx = 41 L
Moz — e 1
]
no= {i- 1) ar (for i = 1t Nrj
o= (- 1) (for j = 1to Nx)

s- e [
a8 =3 2
a P ar B
a8, = 312 - |lne —| - |- =— (for i = 2to N-1)
H 2 ]‘ [ 2 j[‘j|
Sy = 3142 : a f
18y = 21 ERE

nodes attube entrance (x=0)
T = Ta (for i= 110 Ny
nodes attube axis (1=0)

K Ar AS
B Co Ve 35y ¢ (Tyy— Ty ) = R (TZJ,T,_’)~K-AX—- (Tojr * To — 2 Tyy) (for j= 210 MNx-1)

nodes attube wall (1=R, convection to outside air)

a ] o ASy
Moo (T = Tea] 273842 Romc = k- 2302 [R— | o (T~ Tag ) K

(Theer * T = 27 Tog ) for j= 2to Ne1)
internal nodes

0t K K ar
P Cp Vmax [1 - {EH a8 - Ty = Ty ) = bl 23142 - ax [r‘» T] (Titg = T+ prai 2 - 3142 [r‘— T} (Togg = Tig)+ k- =

5 Tyt * Ty = 2- Ty)  (or i= 2t0 Ne=1); j= 210 Neet)

nodes attube exit (x=L)

ar 28,
23142 - |6 - S| (Tume = Tow) * Ko 3 (Tows = Tow)  (or 1= 210 N

nF Kk
o Gy Ve [1 - {;H 38 - (Tone = Tipar ) = 5= 27 3142 -

m‘§

ne 2l T ) A 2
it e = T ) 2 30
node axisexit (1=0, x=L)

k Ax 7
P Vw881 (Tha = Tro) = v 570 20 3142+ G {Tay = Tow )+ %+ T+ (Tra = Towr)
node wall / exit (=R, heatflux q, x=L)
Mo (Torss = Toq) 2 3142 - R -

= k-o2-o3142 R 2| 2 r Tarar )+ k- —2-- (T, Toiar )
= - R 2041 = Torat o 240 = Tona

for graph with x evolution - average T and convection coefficient

o[ ]
N

TVAL; = Tij " Venax ° [1 - [%H 484 (for j= 110 Ny

e
TVAMG = Thg  Vmax - [1 - [RLH ASy (for j= 110 Ng

VA = Ve [w - {EH- 3; (for i=2to 1)

VA = Tij " Veax [1 - {EH a8; (for i= 2t N=1);j= 110 Ng

avoid entrance where h is infinite

e

Z (Tvay )

= G  forj=2% M

T (va )
Ty = Tay ffor j = 2to Nx)

- T
Peomj = Nase [4—’} (for j= 2to N¢

Tar = T

comparison with theary
Call pipeflow (‘water ; T,; 100; ;2 - R; L 0 Nuyepneary Nui AP 5 NUSSeltyesr i Repagy )

Call pipeflow,c (Water | Toi 1005 B 2 R; %5 00 Ngpeoy)  fOr | = 210 M)

Figure 4.7.6 — Formatted Equations Window for the heat transfer in a laminar flow example.
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Equations Window = R =
=)
"LAMINAR WATER FLOW (Tin=80°C) IN TUBE (DEVELOPED VELOCITY PROFILE)" ~

R=0,0125 " tube radius in meters”
L=10 "tube length in meters”
T_in=80 "inlet temperature”
T ave[1]=T_in
T_ext=20
h_ext=20
v_max=0,085 "m/s’
tho=Density(Water,T=T_in;p=100)
¢_p=Cp{Water,T=T_in;p=100)*1000
k=Conductivity(Water, T=T_in:p=100)
Re=rho*y_med*R*2/Viscosity(Water T=T_in;P=100)
Nr=21: N=R/DELTAr+1
MNx=41: Nx=L/DELTAx+1
duplicate i=1; Nr
i]=(-1)"DELTAr
end
duplicate j=1; Nx
X[]=(-1)"DELTAX
end
DELTAS[1]=pi#"(DELTA//2)2
duplicate i=2; Nr-1
DELTAS[{]=pi#"((r{i]+DELTAI2)2-([i-DELTAr/2p:2)
nd

DELTAS[Nr]=pi#~(1{Nr]*2-(r[Ni]-DELTAW/2):2)
“"nodes at tube entrance (x=0)"
duplicate i=1; Nr
T[:=T_in
end
“"nodes at tube axis (=0)"
duplicate [=2; Nx-1
tho*c_p*v_max"DELTAS[1]"(T[1j-T[1j-1])=k/DELTAr DELTAX"2"pi#" DELTA2*(T[2 T i)+ DELTAS[JDELTAR (TH:j+ 11+ TH 112 T[ 1)
end
“"nodes at tube wall (=R, convection to outside air)"
duplicate j=2; Nx-1
h_ext™(T[Nr}-T_ext)"2"pi# R DELTAu=le'2"pi#"(R-DELTAI2) DEL TAX/DELTAr(T[Nr1,j]-T[Nr ]+ k DELTASN/DELTAX(T[Nr j+ ]+ TINr 12 T[Nr ]}
end
“internal nodes”
duplicate i=2; Nr-1
duplicate j=2; Nx-1
the*c_p*v_max"(1-{ri/RY2)" DELTAS (Tl j-Tlij- 1)} =K/DELTAM2*pist DELTAX(r[il * DELTAW2)(T[i+1.jJ-Tli ]+ /DELTArDELTAK"2"pi# (1[i-DEL TAN2)*(T[i-1,J-Tlij)}+ k" DELTASVDELTAK (T j 11+ T[isi-1 - 2Tl
end
end
“"nodes at tube exit (x=L)"
duplicate i=2; Nr-1
tho*c_ptv_max"(1-{ril/R)2)" DELTAS ] (Tli:Nx]-T[i:Nx-1])=k/DELTAr2*pisDELTAR/2(r[il * DELTAN2)(T[i+ 1, Nx]-T[i:N])+ k/DELT A DELTAR/2"2pi#*(1[i-DELTAN2) (T[i-1;Nx]-T[i-x] k" DELTAS[i}/ DELTAx(T[i: Nax-1]-T[izhix])
end
“"node axis/exit (=0, x=L)"
tho*c_p*v_max"DELTAS[1]"(T[1;Nx]-T[1:Nx-1]}=k/DELTADELTAX/2"2" pi# DELTAN2*(T[2:Nx]-T[1;Nx] ke DELTAS[JDELTAX (T[T Nx-1FT[1:Nx)
“"node wall / exit (=R, heat flux g, x=L)"
h_ext*(T[Nrhx]-T_ext)2*pi"R™DEL TAx/2=k"2"pif*(R-DELTAN2) DELTAw/2/DELTAr(T[Nr-1;Nx]-T[Nr:Nx] k" DELTAS [ DELTAK TN M- T[N N

“for graph with x evolution - average T and convection coefficient”
VA[1]=v_max"(1-{{1}/R}"2)"DELTAS[1]
VA[NI]=v_max"(1-({Nr}/R}*2) DELTAS[Nr]
duplicate j=1:Nx
TVALJ=TIJ_max (1< 1J/Rp2) DELTAS[1]
TVA[NEJ=T[Nr_max(1-([Nr}/R):2) DELTAS[NI]
end
duplicate i=2:Nr-1

VA[i]=v_max"(1-{{i}/R}2) DELTAS]
duplicate j=1;Nx

TVAL =T Fv_max™(1-(r[i/R}*2)"DELTASIi]
end
end
v_med=sum(VA[i];i=1;Nr)/(pi"R*2)
duplicate j=2;Nx "avoid entrance where h is infinite”
T_ave[jl=sum(TVAi:j:i=1;Nrsum{VA[il:i=1;Nr)
T_s[II=TNr:j]
h_comj=h_ext*(T[Nr;j]-T_ext)T_ave[j]-T[Nr;]])
end
T_s[1]=T_in
M_dot=rho™_med"pi"R*2
“"comparison with theory”

call PipeFlow(Water;T_in;100:M_dot:2°R;L;:0:h_ave_theory; h_H :DELTAP; Nusselt_theory; f: Re_theory)

duplicate j=2;Nx

call PipeFlow_local(Water;T_in;100;M_dot;2*R:x[j];0:h_x_theory[j]; h_x_H_theory[j]; dPdx[j])

end w
EU [Line:34 Char138 | Wrap: On | Insert Caps Lock: Off | 51 C kPa kd mass deg | Warnings: On | Unit Chic On  Complex: Off | Syntax Highlight:Off

Figure 4.7.7 — Equations Window for the heat transfer in a laminar flow example.

After performing the calculations (Calculate — Solve) all the main results, namelly
temperatures and convection coefficients, will be available in the Arrays Table. With 21 X 41
nodes, the table will contain 21 rows and 41 columns just for the fluid temperatures; there will
be 41 rows for variables such as Tg[j] and h.opy,[j]. Figure 4.7.8 shows a partial view of the
Arrays Table.

From this table several graphical outputs may be obtained. Figure 4.7.9 shows the temperature
distribution in 3 different flow sections (x coordinates). As can be seen, the water reduces its
temperature along the flow direction, as it looses heat to the outside, and a large part of the
sections has a small temperature variation; the variation is larger in the region near the wall.
Figure 4.7.10 shows a Color Bands graph representing the 2D variation of T (x, ).

Figure 4.7.11 represents the change of the section average temperature, of the wall surface
temperature, and of the convection coefficient along the flow length. Figure 4.7.12 shows the
evolution of the calculated convection coefficient compared to existing theoretical models
obtained with the EES procedure: constant wall temperature or constant wall heat flux. Our
example has variable T and variable ¢, with h_,,,, values standing between those 2 cases.
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4.7 — Heat transfer in a laminar flow in a tube

Chapter 4 — Distributed and combined modelling examples

ArraysTabIe
Main ]
< F- 3 4 5 8 7 8 ] 10 1 2 T
Sort AS‘ hcnnv‘\ fi Tm Ti;2 Ti‘3 T\;4 Ti;5 Ti‘ﬁ T\;? Ti;B T\“J
M1 3,068E-07 0 80 80 80 80 79,98 79.98 79.96 79,93 7989
21 0,000002454 292 0.000625 80 80 80 80 79.99 79.98 79.96 79,93 79.88
[31 0,000004909 2226 0,00125 80 80 80 80 79,99 79,97 79,95 79.91 79.86
[4] 0,000007363 1831 0.001875 80 80 80 79,99 79,98 79,96 79.93 79,88 7983
[5] 0,000009817 176 0.0025 80 80 80 79.99 79,97 79.94 79,9 79,85 79,17
[6] 0,00001227 1644 0,003125 80 80 79,99 79.98 79,96 79,92 79,86 79.78 79.69
71 0,00001473 156 0.00375 80 80 79,99 79,97 79,93 79.87 79.79 79,68 79,57
[8] 0,00001718 149.6 0,004375 80 80 79,98 79.95 79.89 79.8 79,69 79,56 7941
91 0,00001963 144,58 0,005 80 79.99 79,96 79.91 79.82 9.7 79,56 79.38 79.19
[10] 0,00002209 140,3 0,005625 80 79,98 79,94 79,85 79,72 79,55 79.36 7914 7891
[11] 0,00002454 136,9 0,00625 80 79,97 79.89 79.75 79,57 79.34 79,09 78,82 78,54
[12] 0,000027 134 0.006375 80 79.95 79.81 79.61 79.35 79,05 78,74 78.41 78.08
[13] 0,00002945 1316 0.0075 80 799 79,68 7939 79,04 78,67 78.29 7791 77,53
[14] 0,00003191 1295 0.008125 80 79.82 79.49 79.07 78,62 AT 7773 77,29 76,88
[15] 0,00003436 127.6 0,00875 80 79.68 79,19 78.63 78,09 77,56 T7.08 76,58 76,12
[16] 0,00003682 126 0,009375 80 79,46 78,76 78,06 7742 76,82 76,27 75,77 7528
[17] 0,00003927 1246 0.01 80 79,11 w7 77,34 76,62 75,98 754 74,87 7438
[18] 0,00004172 1234 0,01063 80 78.58 7.4 76.48 75,72 75,05 T4.46 73,92 7342
[19] 0,00004418 1223 0.01125 80 7785 76,5 75,52 7473 74,06 73.46 7293 7243
[20] 0,00004663 1214 0.01188 80 76,91 75,49 745 73,72 73,05 7246 71,93 7144
[21] 0,00002424 1205 0.0125 80 7564 7444 7347 T 7205 7147 70,95 7047
221 | 197
[23] 1191
[24] 18,5
e | 17,9
[26] 174
[27] 117
[28] 1166
[29] io182
130] IR
[31] 1156
[32] 1154
[33] 1152
[34] 114.9
T P ]
< >

Figure 4.7.8 — Arrays Table for the heat transfer in a laminar flow example.

0,0125
r (m)

TMi;11] - x=2.5 m

0,01

0,0075 Thi;21]-x=5m

TMi;41] - x=10m
0,005

0,0025

60 65 70 75 80

T (°C)

Figure 4.7.9 — Temperature distribution in 3 flow sections for the heat transfer in a laminar flow example.
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Radius, r (m) T (°C)
0,0125
80
0,01 ;g
74
0,0075 72
70
0,005 o8
64
0,0025 62
60
0
0 1 2 3 4 5 6 7 8 9 10

Flow length, x (m)

Figure 4.7.10 — Temperature distribution in the heat transfer laminar flow example — colour bands.

hconv 400 80
(W/m?°C) T (°C)
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65
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100 -60
10
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Figure 4.7.11 — Evolution of average temperature, wall surface temperature and convection coefficient along the

flow length.
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Figure 4.7.12 — Comparison of the calculated convection coefficient with available theoretical solutions.
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As said before, the previous results were obtained with a uniform 21 X 41 grid, with
Ar = 0.625 mm and Ax = 250 mm. A larger number of nodes leads to negligible differences.
A smaller number of nodes was also tested. The number of radial nodes is more important, and
Figure 4.7.13 shows additional results for a 11 X 41 grid and a 6 X 41 grid. There is a more
noticeable difference only for the 6 radial nodes grid (with Ar = 2.5 mm).

80
T (°C)

400

hconv

(Wim2°c) i
350 |4

75
300

250 70

200 -
‘ 65

— 2141
- 11x41

Ty heony

150

100 BN o vtk bl S “gp

4.7 — Heat transfer in a laminar flow in a tube

Figure 4.7.13 — Comparison of the calculated wall surface temperatures and local convection coefficients for
different grid sizes.

4.8 Heat transfer in a laminar flow over a flat plate

T

y ° b

Ven

Figure 4.8.1 — Laminar flow over a flat plate.

Consider a flow of air over a flat plate, with a velocity v,,= 5 m/s (parallel to the surface). The
air is at 30°C (T,,) and the plate at a constant temperature of 60°C (T},). The plate length is equal
to 1.5 m.

With EES, using a grid of 31 x 31 nodes/elements, with a maximum distance to the plate (along
y) of 3 cm, calculate the flow velocity components (v, and v,) and the flow temperature
distribution (T'(x,y)). After the temperature field calculate the variation of the convection
coefficient along x.

4.8 — Heat transfer in a laminar flow over a flat plate

While in the previous example the flow was dynamically developed, and the velocity profile
was known, in this case the dynamic and thermal boundary layers are under development.
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We will assume a 2D geometry, with the velocities (v, and v),) and temperature varying along
the flow direction, x, and y. The index i will be associated with y, varying between 1 and N,,,
and the index j will be associated with x, varying between 1 and N,.

For the entrance nodes (i,1) the velocities and temperatures are known: v, (i,1) = v,
v, (i,1) = 0, T(i, 1) = 30°C). For the other volumes, with dimensions Ax and Ay, we need 3
equations to calculate the 3 unknown properties (the 2 velocity components and temperature).
We may use the well-known continuity, momentum and energy differential equations, and apply
a finite differences discretisation, or perform mass, momentum and energy balances for the
chosen control volumes (finite volumes approach).

1.+]’ _]
Ay ]
e
aall I,IJ bt
o [puGibyl
i‘l, ,] \\

pv,(i—1,j)Ax

Figure 4.8.2 — General control volume (i, j) and mass balance with upstream velocities at volume borders (inlets
and outlets).

Using Figure 4.8.2 as a reference, for the steady-state incompressible flow, the mass balance is
(v (i, ) — v (i, — D] Ay + [vy (i, ) =1, (i — 1, )] Ax =0 (4.8.1)

which could also be obtained by discretising the continuity differential equation with upwind
differences:

LA Y SN U C) P CY ) NG 4 O3 D { Gt ) PN

dx dy Ax Ay

(4.8.2)

Regarding momentum in the x direction, the change in momentum is due to the only force
acting in that direction: viscous stress. The differential equation is:
vy vy 0%v,

Uy ox + vy, E =V 9y2 (4.8.3)

which after discretisation becomes

oy () v (i, -1)] oo @D =L D] [k (i41, ) +0x (i—1,)) =205 (i,))]
v, (i, ) o + v, (1)) & =v Ay? (4.8.4)
Regarding the conservation of energy, the change in energy transported by the flow is due to
the exchanges of the volume with neighbour volumes, by conduction. We may write the
discretised equation (neglecting energy dissipation due to low velocity):

.k [T(: )—T(, ._1)] TR [T(, )—T(—l, )]
PCp [Vx(l:]) % + vy, (4,)) %} =

TG+ DT -1 =2T G D] | [TG+1)+T(=1,)—2T ()]
- k[ Ax? + Ay? ] (4.8.5)

Then, equations (4.8.2), (4.8.4) and (4.8.5) allow the calculation of v, v, and T.
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Chapter 4 — Distributed and combined modelling examples

Besides the fixed velocity and temperature conditions at the entrance section — nodes
(i=1to N,,1) — the conditions at the plate are also known: for nodes (i = 1,j = 2 to N,)
both velocity components are equal to 0, and the temperature is the plate temperature. Far from
the plate, outside the boundary layer — nodes (i = N,,,j = 2 to N,) —, the velocity is equal to
Vs and the temperature to T,. As the boundary layer is smaller than the maximum distance to
the plate used (3 cm), those conditions are valid for i = N,,. The conduction term at the exit
section will be neglected by imposing the same temperature at (i, N, + 1) and (i, N,,).

The local convection coefficient is equal to the heat flux at the wall divided by the temperature
difference between plate and T,,. The heat flux at the wall is evaluated as the heat conduction
rate in the fluid, between the 2 nodes nearer to the wall (neglecting longitudinal conduction):

k .
] n —(Tp—T[2,j1)
heony []] =1L = (4.8.6)

C (p-Tw)  (Tp—Tw)
Figure 4.8.3 presents the Equations Window, and Figure 4.8.4 the Formatted Equations.

Equations Window EI@
-—
"LAMINAR AIR FLOW PARALLEL TO A PLATE AT CONSTANT T" ~

H=0,03 "max distance from plate to infinit flow = 0.03 m"
L=1.5 "plate / flow length in meters”

v_infinity=5 "velocity far from plate m/s"

T_in=30

T_p=60

"Air properties”
rho=1.2
c_p=1005
k=0.025
nu=15e-5
Re=v_infinity*L/nu
Pr=nu*rho*c_p/k

Ny=31: Ny=H/DELTAy+1

Nx=31: Nx=L/DELTAx+1

duplicate i=1; Ny
y[i]=(-1"DELTAY

end

duplicate j=1; Nx
*[)=(-1)*DELTAx

end

"nodes at entrance (x=0, |=1)"
duplicate i=1; Ny
w_x[i; 1]=v_infinity
v_yli;1]=0
T[i:1]=T_in
end
"nodes at plate (y=0, i=1- at T_p) and infinite (y=H. i=My - at T_in)"
duplicate j=2; Nx
w_x[1:j]=0
v_y[T:j]=0
Tj=T_p
v_x[Ny:j]=v_infinity
v_y[Ny:j]=v_y[Ny-1:]]
T[Ny:j]=T_in
end
“internal nodes”
duplicate i=2; Ny-1
duplicate j=2; Nx
(v_xfi:j]-v_x[i:j- 1] VOELTAse+(v_yfi;]lv_y[i-1:;]VDELTAy=0 "continuity equation - mass balance”
O[] v x i1 x i VDELTAxEnu* (v_x[i-1.j]+v_x[i+1.j]-2_x[i,)IVDELTAy*2 "momentum equation - v_y term removed for convergence”
s X[ T T - 1 VDELT Aty y (i) (T j]-Tl-1:IMDELTAy=ki(rtho*c_p)*((T{i;j-1]+T[i:j+1]-2*T[i,JINDELTAx24+(T[i-1: )]+ T[i+1;j]-2*T[i; ] VOELTAy"2) “energy equation”
end
end
"nodes exit x - Nx+1"
duplicate i=2;My
T[i:Mx+1]=T[i:Mx]
end
"for graph with x evolution - convection coefficient”
duplicate [=2;Nx
q_dot[j]=k/DELTAy™(T_p-T[2;]]} "neglecting longitudinal conduction”
h_conv{j]=q_dot[j}/(T_p-T_in)
end
"comparison with theory”
duplicate j=2; MNx
Re[j]=v_infinity™x[j]/nu
Musselt[j]=0.332*Re[j]*0.5"Pr{1/3)
h_theary[j]=Nusselt[j]"k/x[j]
end v

EU |Line: 88 Char: 36 Wrap: On | Insert Caps Lock: Off | SICkPa k) massdeg | Warnings: On | Unit Chk: On  Complex: Off Syntax Highlight: Off

Figure 4.8.3 — Equations Window for the laminar flow over a flat plate example.
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Formatted Equations

LAMINAR AIR FLOW PARALLEL TO A PLATE AT CONSTANT T
H = 003 maxdistance from plate to infinit flow = 0.02 m
L = 15 plate/flow length in meters

Ve = 5 velocity far from plate mis

Tp = 30
T, = 60
Air properties
p = 12

c, = 1005
k = 0,025

v = 0,000015

|~

Ny = 3 H
My = + 1
Ay
Nx o= 3 L
My = —+ 1
AX
vio= (i- 1) a ffor i = 1t Ny

o= (- 1) & (for j= 1t N

nodes at entrance (x=0, j=1)

Vei1 = Voo (for i = 110 Ny)
Vg = 0 ffor i= 1ta Ny)
Tit = Tin (ffor i = 110 Ny)

nodes at plate (y=0, i=1 - at T} and infinite (y=H, i=Ny - at Tjn)

Vg = 0 ffor j = 210 Nx)
Vyrj= 0 (for | = 210 MNx)

Ty = Ty ffor | = 210 Nx)
Viehy) = Vao (for j = 21t0 Nx)
Vyehys = VanNy-15 ffor j = 2t0 Nx

Ty; = T ffor = 210 Nx)

internal nodes

Heat Transfer: numerical modelling with EES applications

Voii— Veiiet Voii— Vit . .
""-l__\x E.15 LI Wll;\Y ] (for i = 2t Ny=1); = 210 Nx) continuity equation - mass balance
49 Vst — 2 Vi
R B
ay

} ffor i= 2t Ny=1); 1 = 2t MNx) momentum equation - v, term removed for convergence

T = Tos T - Tos k
Vicij” { T ]+ Vi [ < M — ] i

nodes exit x - Nx+1

_\XE

T T — 2 - Ty
o

Timet = Tinx ffor i = 2t0 Ny)

for graph with x evolution - convection coefficient

. k
9; = T (Tp - TZ:i) (for j = 2 to Nx) neglecting longitudinal conduction
Neany;j = —J—T 4 (for j = 2to Nx)
e~ Tin
comparison with theory
X
Re; = Vg~ % (for ] = 210 M)

Nusset; = 0332 - Re”® - pritie] flor j = 2t Nx)

3
Nipeory; = Nusselt; - — ffor j= 210 Ny

(for i = 2to Ny-1); j= 210 Nx) energyequation

Figure 4.8.4 — Formatted Equations Window for the laminar flow over a flat plate example.
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Results were obtained for a 31 x 31 grid, which, with a flow length of 1.5 m and a height of 3
cm, means Ax = 5 cmand Ay = 1 mm.

When running the program a few convergence problems occurred. The initial guess values were
changed for the temperatures — choosing 50°C, as a value between 30 and 60°C — and also for
the vertical velocities, vy(i, j) — a value of 0.01 m/s was used. Besides, it was found that the
term related to v, (i,j) in the momentum equation (4.8.4) was causing no convergence.
Therefore, this term was eliminated, which should not produce bad results, as the velocity
vertical component (v,,) is very small compared to the horizontal component (vy). The error
will be assessed by comparing the convective coefficient results with the theoretical solution
for a laminar flow over a flat surface, which was added at the end of the Equations Window.

After performing the calculations (Calculate — Solve) all the main results, namelly velocities,
temperatures and convection coefficients, are available in the Arrays Table. From this table
several graphical outputs may be obtained.

Figure 4.8.5 shows the horizontal velocity (v, ) distribution, for 4 different x coordinates. The
velocity gradient decreases along y, as expected, and the dynamic boundary layer thickness
when the air leaves the plate is equal to about 1 cm. Figure 4.8.6 shows the same distribution
for all values of x and y, using colour bands. Figure 4.8.7 represents the vertical velocity (v,,)
distribution, for 4 different x coordinates. The velocity values are much lower than the vertical
ones, reducing in the main flow direction. The maximum value at x=0.25 m is about 0.011 m/s.

Figures 4.8.8 and 4.8.9 show the temperature distribution in the flow. Temperature gradients
are high near the plate wall, as expected. The thermal boundary layer is slightly thicker than the
dynamic boundary layer: at the exit (x=1.5 m) the thermal boundary layer is about 1.25 cm
thick. This is expected from theory, as the Prandtl number for air is lower than 1 (with Pr=1
the two boundary layers would have the same size). In this air flow the Reynolds number is in
the laminar limit of 5 X 10°, and the theoretical calculation indicates a dynamic boundary
thickness of 0.0106 m at the plate exit. Since Pr=0.724, the theoretical thermal boundary layer
thickness should be equal to 0.0118 m. The values obtained with the numerical model are very
close to the theoretical predictions.

0,015

y (m)
0,0125

0,0075

0,005

0,0025

Figure 4.8.5 — Horizontal velocity distribution in the laminar flow over a flat plate, at four x locations.
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Figure 4.8.6 — Horizontal velocity distribution in the laminar flow over a flat plate — colour bands.
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Figure 4.8.7 — Vertical velocity distribution in the laminar flow over a flat plate, at four x locations.
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Figure 4.8.8 — Temperature distribution in the laminar flow over a flat plate, at four x locations.
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Figure 4.8.9 — Temperature distribution in the laminar flow over a flat plate — colour bands.

Following equation (4.8.6), the model was used to calculate the evolution of the convective heat
transfer coefficient (h.yny[x]). The results are presented in Figure 4.8.10, where a comparison
is made with the theoretical values from the expression for laminar flow over a flat plate. The
results of the numerical model are fairly close, with a slight underprediction for low values of
x (a slight overprediction in nodes j=3 and j=4). The differences are generally lower than 5%.
This means that the approximations made, namelly regarding the momentum equation, are
fairly valid.

25

hr:omlr[i]
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Figure 4.8.10 — Comparison of the calculated convection coefficient (black colour curve) with the laminar flow
theoretical solution (red colour dots).
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4.9 Solar dryer heat and mass transfer

DRYER

WET MATERIAL

Figure 4.9.1 — Schematic representation of a solar drying system.

A small solar drying system is composed of a solar collector and a drying chamber. Ambient
air is introduced in the collector, with an area of 2 m?, and a flowrate of 15 litres/s/m?; under
those conditions its efficiency is equal to 0.5. Climatic data during the drying period are given
in the table below: air temperature (T,,,3), humidity (¢4,p) and incident solar radiation on the
collector surface (Iso; co1)-

The drying chamber contains a wet material (fully saturated surface) with an air channel with a
height of 5 cm. Itis 2 m long and 1 m wide. The flow may be assumed as parallel to the material
surface. Heat transfer with the outside of the chamber (top, bottom and sides) is negligible.

Assume quasi-steady conditions in the collector and drier. Considering the mixed-mean air
properties in each flow section, dividing the dryer into volume elements, and using convection
coefficient correlations, obtain with EES the evolution of air temperature and humidity along
the channel, and the drying rate, during the drying period.

hour 9 10 | 11 | 12 | 13 | 14 [ 15 | 16 | 17
Tamp (°C) 16.6 | 174 | 196 | 22.2 | 228 | 24.2 | 23.2 | 23.0 | 22,0
Pamp (%) 55 | 51 | 46 | 42 | 43 | 41 | 39 | 48 | 51

Lsor.co1 (WIM?) 601 | 770 | 897 | 961 | 962 | 887 | 748 | 557 | 368

The model will start by calculating the solar collector outlet conditions (temperature and
humidity) for the existing inlet (ambient air) conditions, taking into account the collector
efficiency. Under quasi-steady conditions, we may write:

Qcor = 77colIsol,colAcol = Mcolcp (Tcol,out - Tamb) (4.9.1)

As the air is heated in the collector, its relative humidity (¢) is reduced, although maintaining
the same absolute humidity (w). The ambient air absolute humidity (at the inlet) may be
calculated after the ambient temperature and relative humidity. In EES, using the absolute
humidity property function for AirH20 (‘“humrat”, from humidity ratio):

win = humrat(AirH20; T = Tymp; R = dgmp; P = 100) (4.9.2)

for air at atmospheric pressure (in kPa). This will also be the absolute humidity at the entrance
of the dryer.
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From equations (4.9.1) and (4.9.2) we know, for each climatic situation, the air temperature and
humidity at the dryer inlet. The collector volumetric flow rate is always the same (imposed by
the fan performance), but there is a slight variation of the total mass flow rate, which includes
dry air flow rate plus water vapour flow rate. The relationship between them is given by:

Mcol = Mdry(l + a)in) (4.9.3)

The dry air flow rate will be the same along the dryer length, but the total flow rate will increase,
due to water evaporation.

The dryer will be divided into N nodes and N-1 finite control volumes, according to Figure
4.9.2. We shall use control volumes of the same size (Ax), because the inlet conditions (node
1) are already known: the inlet air properties are the absolute humidity (w[1]), the temperature
(T4ir[1]), and the air enthalpy per mass of dry air (h.p:[1]); the subscript ent was used for
enthalpy, to distinguish from the h symbol for the convective coefficient. Equations (4.9.1) and
(4.9.2) define w[1] and T,;,-[1], and the enthalpy is easily calculated with the EES function:

hene[1] = enthalpy(AirH20; T = Ty;-[1]; R = $amp; P = 100) (4.9.4)
Y — ] w[l] — - w[l + 1]
Tair[i] € Q Tarli+1]
— hent i 4 hen [l + 1]
? 2 ;) io Or'+1 ¢ I\IO—T /?/ . L \‘!/5[' : .
Ax Ax
a b

Figure 4.9.2 — Finite control volumes in the dryer channel: (a) N-1 volumes, N nodes; (b) generic volume.

For each volume (Figure 4.9.2(b)) the outlet properties (i + 1) will be calculated assuming that
the average air properties in the volume are the inlet ones (i, upwind approach). They result
from mass and energy balances, neglecting the longitudinal heat conduction; this means that
only heat exchanges with the wet surface (at T[i]) are considered.

The mass balance states that the change in air mass is due to evaporation from the wet surface:
Mdry(w[i +1] —w[i]) = Mevap[i] =
=hp [i](AX - width) [pv,sat(Ts [L]) = Gair [l] pv,sat(Tair[i])] (4.9.5)

where the vapour concentration of saturated air can be calculated with the EES property
database as a function of temperature (Ts[i] or Ty;-[i]). The mass transfer coefficient may be
related to the heat convection coefficient with the Lewis relationship, and this coefficient may
be obtained with the EES heat transfer procedure “Ductflow local”, which provides the local
convection coefficients for each location (x[i] + Ax/2 was used).

The energy balance at the wet surface states that the heat needed for water evaporation comes
from air convection (longitudinal heat conduction is neglected):

Mevap [l] Ahlv = h[i] (Ax ) Width) (Tair [L] - Ts[i]) (4.9.6)
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and the air energy balance is:

Mdry(hent [i + 1] - hent [l]) = Mevap [l] Ahlv - h[l] (Ax ) Width) (Tair [l] - Ts [l])
(4.9.7)
which, according to (4.9.6) implies that the air enthalpy remains constant; this wouldn’t happen
if the dryer had heat losses to the outside.

The enthalpy is a function of w and Ty;,, and therefore equations (4.9.5), (4.9.6) and (4.9.7)
allow the calculation of wl[i + 1], Ty[i] and T,;.[i + 1]. The calculation is extended to all
volumes, until the outlet values are obtained (i = N).

Figure 4.9.3 presents the Formatted Equations window, and Figure 4.9.4 the Equations Window.
The total drying rate was calculated by summing the evaporation rate in all volumes. A drying
system indicator (74,,) Was also calculated, by dividing the heat rate needed to evaporate the
water by the heat rate input in the solar collector. A total of 10 volumes (11 nodes) were used,
and its effect will be assessed later.

Formatted Equations ==

S0LAR DRYER HEAT & MASS TRANSFER

A = 2
Mewt = 05
Mo = p - 0015 - Ay 15lisim2 of solar collector

p = plAIRH2O ;T= Ty R= dgme P= 1UEI)

Qg = My - Cp (AN T=Top ) 1000 - (Togon— Tams )
Qeel = Meat  lsaleat Acai

On = © [ARH20 ;T= Ty R= oy P= 100 )

Moot = Mgy~ (1 + 0 )

Tart & Tootowt defines Tu ¢ - dryerinlet

@y = e

@y = © (ARH20;T=T . R= s P=100) derinletcondions  ATTENTION TO phis; GUESS VALUES
enthalpy; = h (AIRH20 ;T=Ts R = és.1;P= 100 ) - 1000  dryer inlet conditions

L = 2 dring channel length

Width = 1 drying channel width

H = 005 drying channel height5cm

D = 0,000026

viait

Kar = K (AN T=Tg)

N = 10 volumes, (N+1nodes)

L
A= —

N
X = 0
Ny = K+ AX (for i = 1t0 N
WMoy = (g = @) = Mayar (for i = 110 M) watermass balance
G = 6 (ARM20 T= T, R= 4 P 100} ffor 1= 110 1)
Mavspi = New 2 - WiBth - (pysiaumi= bari ~ Pusisivi ) (for i =110 N)
[— ffor 1= 1to N)

_ o [ARH20 ;T=T,;R=1,P=100} or = 110 N
Pusani = U(ARMZO T= T, R=1,P=qo0) =T

_ Dy _
P = hj- —= ffor i= 1t0 Ny
Kair
) : ax

Call ductfiowsecy A Ty 100 Wy ; Ho Width  x; « = 00 by ffor i= 1t N)
Meyzi - ENhEIDY zpoizzon (water ; T=Toue) - 1000 = hy- ax - Width - (Tag— Tewry (for i =1t N) surface energy balance

Mgy - (enthalpy,; — enthalpy; ) = i+ ENMhaIDY oooraron (Water [ T=Toyed - 1000 — by - ax - Width - (Tari— Teurd) (for i = 1to N) airenergy balance

enthalpy,; = h (ARH20 ;T=T, sie1 P= 100 ) - 1000 for i= 1to N}y alternative: enthalpy+1l=enthalpy;
whb = WB (ARH20 ;T= T, R= s P= 100 )

N
Mevszos = 3 (Mg, J- 1000 ingramsis

Oy = Meyapors ENNAIDY yaporisrion (WatST T = Toyrst) inW
A,

Moy = ﬁ_‘[
c

count = hour

Figure 4.9.3 — Formatted Equations window for the solar air dryer example.
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Equations Window EI@
-

"SOLAR PRYER HEAT & MASS TRANSFER"

A_col=2

eta_col=0.5

M_dot_col=rho*0.015"A_col "15 I/s/m2 of solar collector”
rtho=density(AirH20;T=T_amb;R=phi_amb:P=100})
Q_dot_col=M_dot_col*ep(Air, 7=T_amb)*1000%(T_col_out-T_amb)
Q_dot_col=eta_col*l_sol_col*A_col

omega_in=humrat{AirH20; T=T_amb;R=phi_amb:P=100)
M_dot_col=M_dot_dry*(1+omega_in)

T_air[1]=T_col_out "defines T_air[1] - dryer inlet”

omega[1]=omega_in

omega[1]=humrat{AirH20; T=T_air[1];R=phi_air[1]:P=100) "dryer inlet conditions”™ "ATTENTION TO phi_air[i] GUESS VALUES"
enthalpy[1]=enthalpy(AirH20,; T=T_air[1];R=phi_air[1]:P=100)*1000 "dryer inlet conditions”

L=2 "drying channel length”

Width=1 "drying channel width"

H=0,05 "drying channel height 5 cm"

D_v_air=2.6e-5

k_air=conductivity{Air. T=T_air[1])

N=10 "volumes, (N+1 nodes)"

DELTAx=L/N

x[1]=0

Duplicate i=1;N
x[i+1]=x[i]+ DELTAx
M_dot_dry*{omegali+1]-omega[i])=M_dot_evap[i] "water mass balance”
omega[i+1]=humrat(AirH20; T=T_airfi+1];R=phi_air[i+1].P=100)
M_dot_evap[i]=h_m[i]"DELTAx*Width*(rho_vs_surf[i]-phi_air{i]"rho_vs_air[i])
rho_vs_surfi]=humrat(AirH20;T=T_surfli]:R=1;P=100)/volume(AirH20;T=T_surf[i]:R=1;P=100)
rho_vs_air[i]=humrat{AirH20.T=T_air[i];R=1.P=100)/volume(AirH20; T=T_airi].R=1.P=100)
h_m[i]=h[i]*D_v_air'k_air
Call ductflow_local(air T_air[i].100.M_dot_dry:H Width x[i] +DELTAx/2.0-h[i] h_H[i]: dPdx{i])
M_dot_evap[i]*enthalpy_vaporization(Water, T=T_surfli])*1000=h[[]"DELTAx"Width*(T_air[i]-T_surf[i]) "surface energy balance”
M dot_dry*(enthalpy[i+1]-enthalpy[i]}=M _dot_evap[i]‘enthalpy vaporization{Water, T=T_surf[i]}*1000-h[i*DELTAx*Width*(T_air[i]-T_surf[i]) "air energy balance" "altemative- enthalpy[i+1]=enthalpyi]"
enthalpy[i+1]=enthalpy(Aird20;T=T_air[i+1]:R=phi_air[i+1]:P=100)"1000

End

wh=wetbulb(AirH20; T=T_air[1]:R=phi_air[1]:P=100)

M_dot_evap_total=sum(M_dot_evapl[i].i=1;N)*1000 "in grams/s"

Q_dot_dry=M_dot_evap_total®enthalpy_vaporization(Water, T=T_surf[1]) "in W"

eta_dry=Q_dot_dry/Q_dot_col

count=hour

EU |Line: 16 Char: 28 Wrap: On | Insert Caps Lock: Off |SICkPak)massdeg |Warnings: On | Unit Chk: On  Complex: Off Syntax Highlight:On

Figure 4.9.4 — Equations Window for the solar air dryer example.

A Parametric Table (“Table 1) was also created, containing the time (“hour’) and respective
climatic conditions, as well as selected calculation results — see Figure 4.9.5. To obtain those
results, modifications had to be made in the guess values of T,;,-[i] and ¢;,-[i], which by default
are equal to 1; temperatures and relative humidities closer to the collector outlet conditions were
used. Those guess values are only used in Run 1, as the guess/initial values for the other EES
runs use the previous run results.

B Parametric Table =N Bl ===
Table 1 |
<HA 1 ™= ™3 nall 5 8 7 ™= ™s ™0 ™ . ™z | [ EER ™ ™15 ™
1|>.9 hour ‘ Tamb Hamb lsotcol ‘ Tair1 ‘ Tair11 Tourk1 ‘ Hair1 ‘ Hair11 Mevaptotal Meor ‘ Mgry ‘ Qegl ‘ Qgry ‘ Ndry
[*C] [W/m2] [*C] [°C] [°C] [g's] [kg/s] [kg's] W] W]
Run 1 9 165 0.55 501 33,26 30,21 16,62 0,2035 0,2862 0,0433 0,03593 0,0357 601 1066 01774
Run 2 10 174 0.51 770 3838 3 18,24 0,1464 0,2221 0,05353 0,03583 0,03561 770 1316 01708
Run 3 1" 196 0.46 897 44,71 4017 20,23 0111 0,787 0,06344 0,03556 0,03533 897 1556 01735
Run 4 12 222 042 961 49,35 1424 2192 009404 01561 0.07051 0,03524 0,03499 961 1727 01797
Run 5 13 28 043 962 50,04 4489 2242 009649 01584 0,07084 003516 0,03489 962 1734 01803
Run & 14 242 041 887 49,44 1442 2244 0,1031 01684 0,06885 0,03498 0,03471 887 168,5 0,19
Run 7 15 232 0,39 748 444 39,96 2042 0,1193 0,188 0,0613 0,03512 0,03488 748 150,3 0,201
Run & 16 23 048 557 38,79 35,30 19,93 0,1349 0.2731 0,04803 0,03511 0,03481 557 173 02116
Run9 | A7 22 0.51 368 324 29,78 18,06 0,277 0,3607 0,03653 0,03523 0,03493 368 89.8 0,244

Figure 4.9.5 — Parametric Table for the solar air dryer example.

As an x[i] coordinate was defined along the dryer length, every time EES is run the air
properties for the different x[i] values will be available in an Arrays Table. The evolutions may
be graphically represented. Figure 4.9.6 shows the Arrays Table for the last Run in Table 1 (at
17:00), and Figure 4.9.7 represents the evolution of air and wet surface temperatures and
relative humidity along the dryer at 17:00. This figure shows that the wet surface temperature
is almost constant, and equal to the air wet bulb temperature. The same Figure shows that there
is virtually no difference in the air temperature results if 40 volumes are used instead of 10.
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[ Arrays Table = ECR =<
Main
<H>| 2 3 4 8 , ] 5 o 2 3

1] 0 02771 324 0,008504 0.0154 0,03448  0.00000476 -0,0001202 4,08 4,08 0.004071 18,06 54317
2z | (]2 0,287 32,06 0.00864 0.01542 0.03386  0,000004081 -0.0001055 3,588 3,588 0,00358 18,08 54317
[3] 04 0,2957 376 0,008757 0.01543 0,03333  0,000003849 -0.0001016 346 346 0003452 18,09 84317
4] 06 03041 3149 0,008867 0.01544 0,03284 0.0000037 -0,0000997 3.398 3.398 0,00339 1811 54317
5] 08 03123 3122 0,008973 0.01546 0.03238 0,000003582  -0,00009848 3,36 3,36 0,003352 18,12 54317
[6] 1 03206 30,97 0,009076 0.01547 0,03194  0,000003481 -0,00009762 3334 3334 0003326 1813 84317
71 12 0,3286 3072 0,009176 0.01548 0,03151 0.00000339  -0,00009697 3315 3315 0,003307 18,15 54317
[8] 14 03367 3047 0,009273 0.01549 0,0311 | 0,000003307  -0,00009645 3.3 3.3 0,003293 18,16 54317
El] 16 03447 30,24 0,009387 0.01551 0,03071  0,000003228 -0,00009602 3.289 3.289 0,003281 18,17 84317
[10] 18 03527 30,01 0.00946 0.01552 0,03033  0,000003154  -0,00009566 3,279 3,279 0,003272 18,18 54317
[11] 2 03607 2978 0.00955 54317

Figure 4.9.6 — Arrays Table for Run 9 of Table 1 (17:00) in the solar air dryer example.

34 0,40
T (UC) —N= ¢rair
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26 dairli]  ——N=10 0.30
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Figure 4.9.7 — Evolution of different temperatures and relative humidity along the dryer at 17:00.

From the Parametric Table in Figure 4.9.5 different graphs were obtained. Figure 4.9.8 shows
the variation in dryer inlet and outlet conditions (air temperature and relative humidity) for the
different climatic conditions considered. The collector is responsible for a significant increase
in air temperature (from 22.8 up to 50°C at 13:00), with a corresponding decrease in relative
humidity. The air reduces its temperature along the dryer, but stills leaves with a high
temperature (45°C at 13:00) and a low humidity; this indicates that a larger (longer) dryer could
be used for increased system performance.

Figure 4.9.9 shows the evaporation rate and the drying system indicator (74,-,) for the different
climatic conditions considered. The drying rate is higher at 13:00, due to the more favourable
conditions, especially the higher solar collector radiation. The system indicator increases to
about 0.24 at 17:00, due to a high drying heat rate combined with a lower collector heat rate —
see Figure 4.9.10. Note that the value of this indicator is not only due to the solar collector
input, as part of the drying rate is due to the ambient air temperature and humidity. Figure 4.9.10
also represents the change in collector air flow rate, change that is due to the varying humidity,
and air density.
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Figure 4.9.8 —Dryer inlet and outlet air conditions for the different ambient conditions.
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Figure 4.9.9 — Evaporation rate and drying system indicator for the different ambient conditions.
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Figure 4.9.10 — Solar collector input and flow rate, and drying input for the different ambient conditions.
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4.10 Dew point air cooler

A dew point air cooler achieves an air temperature close

il to the dew point temperature, lower than the wet bulb

— | ) 4 temperature of incoming air. To achieve that, the
incoming air circulates in a dry channel, transfering heat

wb %

4
53
<
A
N

whe i _‘—') to a stream of humid air in a wet channel; the humid air is
> dry channel > »" the same air leaving the dry channel, that is partially
diverted to the wet channel, and humidified by contact

Figure 4.10.1 — Dew point air cooler. with a water saturated material.

Simulate the evolution of air temperature and humidity in a dry air channel with a height of 1
cm, a width and a length of 1 m, with an average air velocity of 10 cm/s. The incoming air is at
30°C, with a relative humidity of 40%. There is transfer of heat to one wet channel with the
same dimensions. 50% of the air leaving the dry channel is diverted to the wet channel. The
thickness of the wet material is 1 mm, and its effective conductivity is equal to 0.6 W/m°C; the
thickness of the separating wall may be neglected.

This is another example with simultaneous heat and mass transfer. As in 4.9, we shall assume
quasi-steady conditions in the two streams, and consider the mixed-mean air properties in each
flow section. The two channels will be divided into volume elements, and convection
coefficient correlations will be used for heat and mass transfer.

The inlet air absolute humidity may be calculated after the ambient temperature and relative
humidity. In EES, using the absolute humidity property function for AirH2O (“humrat”, from
humidity ratio):

win = humrat(AirH20; T = Tj; R = ¢yp; P = 101.3) (4.10.1)

for air at atmospheric pressure (101.3 kPa). This will also be the absolute humidity at the end
of the dry channel, and at the flow start in the wet channel. The wet bulb and dew point
temperatures corresponding to the inlet temperature and humidity can also be calculated with
EES functions (WeTbulb and DewPoint AirH20 functions).

The numerical model will consider N nodes and N-1 volumes in each channel, with general
volumes represented in Figure 4.10.2. The two streams flow in opposite directions, and to keep
the same reference (index i in the array variables), while stream a flows with increasing i, flow
b flows with decreasing i. In each volume the entrance properties are known; at the entrance of
channel b (wet channel) T,[N] = T,[N] and w[N] = w;,. In each wet channel section, only
two properties are needed to define the humid air conditions: temperature and absolute humidity
or temperature and relative humidity, as all the others (enthalpy as well) can be obtained from
those 2 properties. Therefore, from an overall volume including the 2 channels, we need
equations to obtain 4 properties: the dry channel exit air temperature (T,[i + 1]), the wet
channel exit air humidity (w[i]), the wet channel exit air temperature (T}, [i]), and the water
saturated surface temperature (T,[i]).
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w[i] | wli+ 1]
Typli] =& & Tpli+1] oe—f
° L\
f : - ! 50%
; |
Ta[l]r Win © Q <)
T,li] | Toli +1]
-
Ax

Figure 4.10.2 — Finite control volumes in the two channels: a — dry channel; b — wet channel.

The 4 equations for each volume are: the mass balance for the wet channel stream, the energy
balance of the dry channel stream (exchange a-s), the energy balance of the wet channel stream
(exchange b-s), and an overall energy balance (a-b). For each volume (Figure 4.10.2) the outlet
properties (i + 1) will be calculated assuming that the average air properties in the volume are
the inlet ones (upwind approach). Longitudinal heat conduction will be neglected.

The mass balance for the wet channel stream states that the change in air mass is due to
evaporation from the saturated wet surface:

Mb,dry(w[i] —w[i+1]) = Mevap [i] =
= hy, (Ax - width) [pv,sat(Ts [i]) — ¢lil pvsac(To [ + 1])] (4.10.2)

where the vapour concentration of saturated air can be calculated with the EES property
database as a function of temperature (T[i] or T},[i + 1]). The mass transfer coefficient was
related to the heat convection coefficient, and only the average value along the flow length was
considered; although there is a variation, this is not very significant for the results (small
hydraulic diameter and low Reynolds number). The average convection coefficient was
obtained with the EES heat transfer procedure “DuctFlow”.

The energy balance of the dry channel stream (a) expresses that the change in energy carried
by the flow is due to the heat transfer across the separating wall and wet material. Other heat
losses to the outside of the channel are neglected. We may write:

My o (Toli] — Toli + 1) = U (Ax - width) (T,[i] — Ts[i]) (4.10.3)

where U is the overall heat transfer coefficient from the air up to the wet surface in contact with
stream b; it includes the convection in stream a, and the conduction through the wall and wet
material. The average convection coefficient for stream a was also calculated with “DuctFlow”.
Note that although the a and b flow rates are different, the convection coefficients are very
similar, because both flow regimes are laminar.

The energy balance of the wet channel stream, also assuming no losses to the outside, includes
convection from the humid air (b) to the saturated surface (s), and the transfer of latent heat
from the surface to the air; the difference between both is due to the heat coming across the
separating wall. The corresponding equation is:
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Mb,dry(hent [l] - hent[i + 1]) = Mevap [l] Ahlv - hb (Ax ' Width)(Ta[i + 1] - Ts[i])
(4.10.4)

An overall energy balance will state that the total energy received by the wet stream (b) comes
from the dry stream (a). That is:

Mb,dry(hent [l] - hent [i + 1]) = Macp,a(Ta[i] - Ta [i + 1]) (4.10.5)

Equations (4.10.2) to (4.10.5) allow the calculation of the 4 unknown variables. However, after
implementation in EES, it was found that convergence was almost impossible. Because the
energy balance at the saturated surface — equation (4.10.4) — involves very small numbers,
associated with the evaporation rate, and at the same time very large numbers, associated with
the enthalpies, this leads to numerical instabilities and convergence problems. To avoid this, a
different form of the energy balance equation was used, using the combined heat and mass
methodology followed by ASHRAE, [8]. With this approach, equation (4.10.4) can be re-
written as

Mpary(hent[1] = Rene[i + 11 = ki (Ax - width) (hengs[i] = Rene[i +1])  (4.10.6)
where k,,, is a mass transfer coefficient, related to h,, through

h
km = hmpdry air = Cp_b (4.10.7)

and h,, s is the enthalpy of vapour at the wet surface:

hent s[i] = enthalpy(AirH20; T = T[i]; R = 1; P = 101.3) (4.10.8)
Using the same methodology, equation (4.10.2) could have been replaced by

Mb,dry(w[i] —wli + 1)) = k,, (Ax - width) (w[i] — w[i + 1]) (4.10.9)

With equation (4.10.6) no convergence problems occurred, and it was not even necessary to
change the default guess values for any variables, starting with all unknown variables equal to
1.

Figure 4.10.3 shows the Formatted Equations window, and Figure 4.10.4 the Equations
Window. Note that the default energy units (kJ) were changed to J, to avoid the constant
multiplication of enthalpies by 1000.

Two performance indicators were also calculated: the wet bulb efficiency (1,,,), quantifying
the approach to the inlet air wet bulb temperature, and the dew point efficiency (1gp),
quantifying the approach to the inlet dew point temperature; they are defined as

_ Tal1]-T4[N]

wb = T -1 p01] (4.10.10)
and
_ Ta[1]-T4[N]
Nap = Ta[1]-Tap[1] (4.10.11)

The exit temperature (T,[N]) will be lower than the wet bulb temperature, approaching the dew
point temperature, and therefore the wet bulb efficiency will be higher than 1.
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Formatted Equations

DEW POINT AIR COOLING
Entrance data
T = 30

RH1 = 04

@p = © [ARH20 ;T=T.;R=RH1;P=P1)

Tuetbubt = WB [ARH20 ;T=T,4R=RH1;P=P1)
Tdewpointl = DP [AIRH20 ;T= T.nR=RH1P=PF1 )
P1 = 101325

L = 1 length, metres

height = 0,01 metres, height of air channels

width = 1 metres

velocity = 0,1 mis

N = 101 nodes; N-1volumes

N = -1

L
Ax

Nenior = N (AIRH20 ;T= Ty i W= oy P= P1)

@1 = O
Teior = Taion
RHyp; = RH (ARH20 ;T=Typpw= o, P=P1)

M, = p(MRH20 T=T,;R=RH1;P=P1}- velocity
My = M, - 05 fotalflowrate b
My = I'dt:_:,y- (1 + oy ) dyairflowrate b

L. = Cp (AR T=T,,]

Call ductfiow (AR ; T, P1; M. height; width & L;

boo Deic e

= 2

- height - L total flow rate a

0 : hy; heg; 4Pa ; Nusseltr; T, Re, )

Call ductfiow (‘AR ; Tyqo P1; My height; width; L; 0@ h.; he; APb; Nusseltry fo; Rey )

Nea + ey

hy = 2

thick = 0,001 cond = 06

l L . thick
U h,  cond
K hy
" Cp (AIRH20 ;T= Ty goq W= 0, P= P17
[ SR TP T R =K/ T Gy, sie
- e (Taim Taga) = U - ax - width - (Ty— To) ffor i = 1to N-1) energybalance dry stream
r}la.m: Np = A% - width - (pyei— RHgq - p‘.s‘b:ir) (for i = 1to N-1) evaporation rate

o (ARH20 ;T=T_;R=1,P=P1)
PusiT YTARMIO T=T, R=1P=p1y  Cor = 10N

@ [ARH20 ;T= Ty R=1;P=P1 ) )

Pustit = YTARH20 T= Ty R=1 P=FP1 ) for i=1to N-1)
r}lt::w- (0 — @iy ) = I"vla.sw (for i = 110 N-1) mass balance in humid air
K~ & - WO - (Nggeim Naogist) = iy (Mengi= Nengint) for i = 110 N-1) energybalance b-s
N = 0 [ARH20 ;T= Ty w=o0;;P=P1) ffor i = 1to N-1)
Nepei= M (AIRH20 ;T=T_;R=1;P=P1) ffor i = 1to N-1T)
o, = o [ARH20,;T=T,;R=1,P=P1) ffor i = 110 N-1)
Ma - cp - (Taim Tawe) = Mean - (Nengi= Nemgaer) (for i = 1te N-1) overall energy balance
RH; = RH (AIRH20 ;T=Ty;w=a;;P=P1] ffor i = 1to N-1)
Ouys = © (AIRH20 ;T=T,;D= Tdewpaint1 ;P = P1 ) ffor i = 110 N-1)
Qgry:101 = Qin
length, = 0
length; = length,; + ax ffor i= 210 N}
eficy, =
efic,, =

— T

Figure 4.10.3 — Formatted Equations window for the dew point cooler example.
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Figure 4.10.4 —Equations Window for the dew point cooler example.

Figure 4.10.5 shows the results for 101 nodes (100 volumes) in each channel. Air in the dry
channel reaches a temperature well below wet bulb. The dew point efficiency is close to 1. The
wet channel air is almost saturated, during the flow length. Figure 4.10.6 shows the effect of
reducing the number of nodes to 41. In this example, it is more advisable to use the higher

number of nodes; a further increase produces similar results to 101.
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Equations Window Blﬂ“ﬁl
L}
"DEW POINT AIR COOLING"
"Entrance data"
T_a[1]=30
RH1=04
omega_in=HUMRAT{AIrH20;T=T_a[1]:R=RH1;P=FP1)
T_wetbulb1=WeTbulb(AiIrtH20;T=T_a[1]:r=RH1:P=P1)
Tdewpoint1=DewPoint(AiIrH20:T=T_a[1]:r=RH1:P=P1)
P1=101,325
L=1 "length, metres"
height=0,01 "metres, height of air channels”
width=1 "metres”
velocity=0.1 "m/s"
M=101 "nodes; M-1 volumes”
N=L/DELTAx+1
h_ent[N]=ENTHALPY (AIrH20.T=T_b[M]:w=o0mega_in:P=P1)
omega[MN]=omega_in
T_b[N]=T_a[M]
RH[M]=RelHum{AirH20;T=T_b[M]:w=omega_in;P=P1)
M_dot_a=Density[AirH20:T=T_a[1]:r=RH1;P=P1)elocity"height™L "total flow rate a"
M_dat_b=M_dat_a*0,5 "total flow rate b"
M_dot_b=M_dot_b_dry*(1+omega_in) "dry air flow rate b"
c_p=CplAir;T=T_a[1])
call DuctFlow(air';T_a[1]:P1:M_dot_a:height;width;L;0:h_s1:h_s2 .DELTAPa;Nusselt_T.f.Re_a)
h_a=(h_s1+h_s2)/2
call DuctFlow(air;T_b[M]:P1;:M_dot_bcheight:width;L;0:h_s3:h_s4 :DELTAPb:Musselt_T_b:f:Re_b)
h_b=(h_s3+h_s4)/2
thick=0,001: cond=0,6
1/U=1/h_a+thick/cond
k_m=h_b/Cp(AirH20;T=T_b[M],w=omega_in;P=P1)
h_m=k_m/Density(Air;T=T_a[1];P=P1) "h_m=k_m/rho_dry_air"
duplicate i=1; N-1
M_dot_a*c_p*(T_a[i]-T_a[i+1]=U*DELTAxc*width™(T_a[i]-T_s[i]) "energy balance dry stream”
M_dot_evap[i]=h_m*DELTAx*Width*(rho_vs_s[i]-RH[i+1]*rho_vs_b[i+1]} "evaporation rate"
rho_vs_s[i]=humrat(AirH20:T=T_s[i].R=1;P=P1}volume(AirH20.T=T_s[I]:R=1.P=P1)
rho_vs_b[i+1]=humrat(AirH20:;T=T_b[i+1]:R=1:P=P1)/volume(AirH20;T=T_b[i+1]:R=1:P=P1)
M_dot_b_dry*(omega[i]-omega[i+1])=M_dot_evap[i] "mass balance in humid air"
k_m*DELTAx*width*(h_ent_s[i]-h_ent[i+1]}=M_dot_b_dry*(h_ent[i]-h_ent[i+1]} "energy balance b-s"
h_ent[i]=Enthalpy{AirH20:;T=T_b[i];w=omega[i].:P=P1)
h_ent_s[i]=Enthalpy(AirH20;T=T_s[i],r=1;P=P1)
omega_s[i]=HumRat(AirH20;T=T_s[i];r=1,P=P1}
M_dot_a"c_p"(T_a[i]-T_a[i+1])=M_dot_b_dry*(h_ent[i]-h_ent[i+1]) "overall energy balance"
RH[i]=RelHum{AirH20;T=T_b[i];w=omega[i];P=P1)
omega_dry[i]=HumRat(AirH20;T=T_a[i];D=Tdewpoint1;P=P1)
end
omega_dry[MN]=omega_in
length[1]=0
duplicate i=2; N
length[i]=length[i-1]+DELTAx
end
efic_dp=(T_a[1]-T_a[N]¥(T_a[1]-Tdewpoint1)
efic_whb=(T_a[1]-T_a[MN]¥(T_a[1]-T_wetbulb1)
EU |Line: 9 Char: 21 Wrap: On | Overwrite | Caps Lock: Off | Sl C kPa J mass deg Warnings: On | Unit Chike On Complex:
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Figure 4.10.5 — Evolution of stream (a and b) temperatures, wet surface temperature and relative humidity (wet
channel). Comparison with inlet air wet bulb temperature.
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Figure 4.10.6 — Evolution of stream temperatures, wet surface temperature and relative humidity (wet channel) for
two different node numbers (41 and 101).
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Figure 4.10.7 — Psychrometric chart representation of air stream evolutions in the 2 channels: a — dry channel; b -
wet channel.
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Figure 4.10.7 shows another type of graph that may be obtained with EES: a psychrometric
graph, representing the air temperature and absolute humidity (w) of the air, along the 2
channels. The dry stream (a) is cooled at constant absolute humidity (no mass transfer), from
30°C down to 15.8°C, and the wet stream (b) evolves always close to the saturation line, leaving

at 24.1°C.

Note that the use of a higher inlet air flow rate may compromise the objective of reaching a
lower than wet bulb temperature. To assess that, further results were obtained with an inlet
velocity of 0.4 m/s (4 times higher). The results are shown in Figures 4.10.8 and 4.10.9. With
the higher flow rates (maintaining 50% in the wet channel), the outlet temperature of the dry
channel is now 20.7°C, higher than the wet bulb temperature. The wet bulb efficiency is now

only equal to 0.93.

30 1.0
Tri .
i, RHI[i]
Ta 0,9
26 RHp
0,8
24 Ts :
22 0,7
20 Th Twb
0,6
18 ficus=0,9308
eficyp=0,
16 eficy;=0,6142 L7
14 40,4
0 0,2 04 0,6 0,8 1
lengthli]

Figure 4.10.8 — Model results for an inlet velocity of 0.4 m/s (dry channel).
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Figure 4.10.9 —Model results for an inlet velocity of 0.4 m/s (dry channel).
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4.11 Domestic hot water solar system with thermal storage stratification

— consumption

A 4

collectors storage
tan auxiliary
@ tank
pump ) T
mains

Figure 4.11.1 — Schematic representation of a DHW solar system.

Consider the domestic hot water solar system of example 3.5, in its last configuration, with a
separate auxiliary tank, electrically heated with proportional control. We want to assess the
effect of thermal stratification in the storage tank, using different volumes in the vertical
direction. The auxiliary tank can still be considered at uniform temperature.

Additional data are:

= storage tank diameter: 0.5 m;

= storage tank height: 1.528 m;

= storage tank heat loss coefficient: U=0.645 W/m?°C (UA=1.8 W/°C).

The model of the stratified storage tank is based on its division into finite volumes, and 10
volumes of equal size will be considered. With a total tank height of 1.528 m, this means that
each volume will have a height (AH) of 15.28 cm. The temperature is considered uniform in
each volume and the water flows between elements when the pumps are activated (collector
circuit or consumption circuit). Figure 4.11.2 shows the water circulation inside the tank,
assuming vertical velocity only, under 2 different situations: collector flow rate is higher, or
consumption flow rate is higher.

Under the specified consumption flow rates, when the collector pump operates the collector
flow rate is always higher (0.08 kg/s) and there is a downward flow. When the collector pump
is switched-off, if there is water consumption there will be an upward flow, and if no
consumption occurs there will be no flow inside the tank.

Mco! > Mcons Mcol < Mcons
] |—’ ]
A i=1 s i=1
v T
Meor — MCOE\\{ Mcons - MCDI \T
Ii=NF1 p L= N—-1
Vi=N Ti=N
L I
a b

Figure 4.11.2 — Storage tank finite volumes and flow rates: (a) collector flow rate higher than consumption flow
rate; (b) consumption flow rate higher than collector flow rate.
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Figure 4.11.3 shows the mass and energy flows in different tank volumes, assuming that all
entrances/exits are located in the extreme volumes (top - 1 - or bottom - N). Besides the energy
transported by the flows, each volume will exchange heat by conduction with the neighbour
volumes, and will loose heat through the tank wall to the outside (ext).

Mey > | Megns > ‘ . , .
cot cons Mc ol = M( ons = Mc'r)i > Mmm >
M‘m!f_z)]"coi‘ow M Cy T4 . . . "1 . . . . . \J-l . .
j ext |_’ [[[[[ P (Meor = Meons) ¢ Tica @ ("':Irmvs = Meo1) ¢p T (Meor = Meons) ¢p TNl—] . nga s — Meor) €p T
; dlv I ¥ I
AH i 1 \ AHI oi _\.ﬂ oN
PR S . Y PR . A I .
(Meop — Meons ) Cp T 2 (Mcons Meo1) Cp T, (Meor — Meons) p T; I!:] (Mcons Mear) Cp Tisq Mmrr‘pT,v ext ansf;ﬂ}:mms

a b c

Figure 4.11.3 — Transported energy in finite volumes: (a) top volume (i = 1); (b) internal volume (i); (c) bottom
volume (i = N). Two different situations are represented: higher collector flow rate, or higher
consumption rate.

The two different situations represented in Figure 4.11.3 — higher collector flow rate (with O or
positive water consumption) and higher consumption rate (with no collector flow in this case)
may be written, for each of the 3 volume types, with the help of a pump factor, as already
defined in example 3.5 (f,,mp). This factor is equal to 0 when the pump is switched off, and to
1 when the pump is switched on (when the collector outlet temperature is higher than the inlet
one). With the help of this factor the discretised equation for the top volume, using the implicit
method, is:
T1t+At _ Tlt
pAHAS Cp A—t
+(M£;_1$st - fpumpMct;lAt Cp [fpumpTlHAt + (1 - fpump)TZH-M] +

+ Z_:As (T5H5 = THAY) — U(RDAH + Agop )(TEH = Towe) (4112

_ pqt+At t+At Tt+At t+At
- Mcol Cplcotout — Mcons CpTl +

For an internal volume (i =2to N — 1) itis:

t+At _ ot
L l
pAHAgc,———-L =

At
= (Mctgr?st - fpumng;lAt Cp [fpump (TiHAt - Tit—+1At) + (1 - fpump)(TiTlAt - TiHAt)] -
ky
— o Ag (TP + TEE = 2Tf5) — U D AH (T = Topy)  (4112)
and for the bottom volume:

TAL;+At _ TI\tI
— pt+At Tt+At . mt+At
pAHA Cp At Mcons CpTmains = Mot CpTn" ™ —

_(Mg(;g - fpumng;-lAt Cp [fpumpTlfl-'—-Alt + (1 - fpump)T16+At] +
kw
+% A (TEHAE — TEAY) — U@DAH + Apore )(THHA = Tope)  (411.3)
The additional equation needed is the collector energy balance:

t+At t+At t+At — pytt+At t+At t+At
0.8 Is;-l Acor — S(TN+ - Tar-;b )Acol - Mc;-l Cp(Tc;l,out - TN+ ) (4.11.4)
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Equations (4.11.1) to (4.11.4) allow the calculation of the N storage tank temperatures (10 in
our case) and the collector outlet temperature.

The auxiliary tank is translated in the model in the same manner as in example 3.5, taking into
account that the inlet water temperature is equal to the top storage tank temperature (T;):

t+At
Taux _Taux _ 1

At - MguxCp

[Prdsise + Mégnscp(TES — TEEY) —
~(UA) tank (Tai2" = Text)]  (4115)
with the resistance input (P,.sis:) depending on the control function.

Figure 4.11.4 shows the EES Equations Window containing the model equations. The PUMP
and RESIST functions are the same as those used in example 3.5. There was, however, the need
to obtain the f,,,m; factor using the inlet and outlet collector temperatures at the previous time
(t) and not t + At; this was necessary to achieve convergence in the f,,,, calculation. This
represents an explicit method influence in the otherwise implicit method of discretisation.
However, no significant errors occur, as the time steps are small (60 s).

Figure 4.11.5 shows the corresponding formatted equations window.

Equations Window ==
-
“solar DHY system with stratied storage and separate tank with aux heater with proportional control” ~

FUNCTION PUMP(T_col_in:T_col_out)
IF T_col_out>T_col_in THEN
PUNP=1

FUNCTION RESIST(T)
P_max=1500
T max=55
T_min=50
IF T>=T_max THEN
RESIST=0
ELSE
IF T<=T_min THEN RESIST=P_max ELSE RESIST=P_max*(T_max-T)/(T_max-T_min)
ENDIF
END

V=300/1000 m3 storage tank”
DELTAt=60*1 "

tho= Dens\ly(Watar T=50.p=100)
c_p=Cp(Water: T=50;p=100)1000 "in J/kgK"
K_w=Conductivity(Water, T=50p=100)

T ext=20

T_mains=15

U=0,645

N=10

H=1,528

D=05

A_s=pirD*2/4 “section area”

DELTAH=HIN

V_aux=50/1000 "m3, auxiliary tank”
UA_aux=0.6

eta_0_col=0,8
FU col=5

A_col=4
M_dot_col=0,080 "kg's’
hour=time/3600
line=1+time/DELTAL

T_amb=Interpolate(Lookup 1:T_amb'hour hour=time/3600)
Rad_sol=Interpolate|(Lookup 1'"Rad_sol"hour-hour=time/3600)
M_dot_t polate(Lookup 1 ‘- hour] 3600))/3600

Rad_sol"A_col*eta_0_col-FU_col"A_col"(T[NJ-T_amb)=M_dot_col*c_p*(T_col_out-T[N])

"storage tank top velume, i=1"
T_old[1]=TableValue(Table 1:line-1#T[1])
tho*A_s*DELTAHc_p*(T[1]-T_old[1]/DELTAt=-U*(pi"D*DELTAH#A_s)(T[1-T_ext)}M_dot_cons*c_p*T[1}+M_dot_colf_pump*c_p*T col_out+(M_dot_cons-M_dot_col’f_pump)c_p*(f_pump*T[1]+(1f_pump)T[2])+k w*A_sIDELTAHT2}-T[1])
"storage tank intemal volumes: 2 to N-1" v
duplicate i=2;N-1

T_old[i|=TableValue(Table 1"line-1:4T[i)

tho"A_s*DELTAH"C_p*(T[i|-T_old[i]/DELTAt=-U"pi"D*DELTAH(T[I1-T_ext)*(M_dot_cons-M_dot_cal*f_pump)"e_p"(f_pump"(TiI-T[i-1])(1-f_pump)*(Ti+1}-TIil}+k_w"A_s/DELTAH(T[i-1]+T[i+1}-2°T[i])
end
“storage tank bottom volume, i=N"
T_old[N]=TableValue(Table T;line-1#T[10]) “Inote: when changing N value, change also 10 here
tho"A_s"DELTAH"c_p"(T[N]-T_old[N]}DELTAL=-U*(pi"D'DELTAH+A_s)*(TIN}-T_ext}*M_dot_cons*c_p*T_mains-M_det_colf_pumpc_p*T[N]-{M_dot_cons-M_dot_col"l_pump}*c_p™(f_pump™T[N-1]+(1-f_pump) TN]}+k_w"A_s/DELTAH(T[N-1]-T[N])

f_pump=PUMP(T_old[N],T_col_out_old) "lold value: ous time) for convergence
T_col_out_old=TableValue(Table 1"line-1:#T_col nuu
P_resist=RESIST(T_aux)

T_aux_old=tablevalue(Table 1line-1#T_aux) “recovers previous T_aux”
tho™V auxe_p*(T_aux-T_aux_oldyDELTAt=M_dot_consc_p*(T[1]-T_aux)+P_resistUA_aux"(T_aux-T_ext)

Energy_cons=Energy_cons_ant+P_resist DELTAmnnnrasnn em KWh"
Energy_cons_ant=tablevalus(Tabls 1 line-1#Ene

Energy_ po Energy sol_ant+M_dot_colf_pump’ o p (T cn\ out-T[N])"DELTAY000/3600 "em Kih"

Energy_sol_ant=tablevaiue(Table 1"Tine-1#Energy_sol)

EU |Line:32 Charb Wrap: On | Insert Caps Lock: OFf |SI C kPa ki massdeg | Warnings: On | Unit Chk: On  Complex: OFf | Syntax Highlight:Off

Figure 4.11.4 — EES Equations Window for the DHW solar system example.
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Formatted Equations

solar DHW sysiem with siralified storage and separate tank with aux heater with proportianal control
Function PUMP (T corini Tosiout)

1 (Tegioun® Toin) Then

PUNMP = 1
Else
PUMP = 0
Endif
End PUMP

Function RESIST (T)

Proax = 1500
Toax = 55
Toin = 50

If (T == Tpu ) Then

RESIST = 0
Else
If (T <= T ) Then RESIST = P, T = T
( min ) e B85 pecer s [Tme}

End RESIST
Vo= 22 storage tank
1000
at = 60-1 s
o = o(water;T=50:P= 100}
o = Cp (waler;T=50:P=100)- 1000 inJkgk
ke = K (water ;T=50:P= 100}

N o= 10
H = 1528
D= 05
A, = % section area
" H
MH o=

N

Ve = X ma, auiiary tank
s = Jppg M3 awdliarytan

U = 0
Toes = 08
FUg = 5
Ag = 4

Mo = 008 kols

N time
U7 3500
i time
line = 1+
o
Time = Interpolated |Lookup 1 ‘hour; T. hour =
ame = Interpolated |'Lookup 1 hour; Tomg (hour= 2o
Rad Interpolate? [Lookup 1: our: Rad,yr ;hour= L
ad,y = Interpolatel |Looku our; Rady ;'hour =
sl P P i Rade 3600
§ time
Interpolate1 |'Laokup 1; hour; ‘consumption’ hour = Trune |-
Meens = 3600
Rade  Aw ~ Maei= Floo = Aoy~ (Tio = Tame) = M = €5 (Teiou= Tao}

storage tank top volume, i=1
Tas: = TableValue (Table '; line = 1; Ty )

- T

Heat Transfer: numerical modelling with EES applications

T o1 ;. . i i As
DA oH g { m ] SUC (R D aH e A ) (T - Tee) = Ml 6 Tot Man o famp o S0 Tamant (Maams = Blao - foumg )+ S50 (ume - Tot 01 = foamg )= T2) = by - o= (T2 = To)
storage tank internal volumes: 2 to N-1
Toei = TableValue (Table T'; line - 1; T; ) for i= 210 N-1)
Ti- Tow As
PR BH g [T s —U e DA (T T ) (e = e fae ) G (e (T Tea ) (- ) (T = T) e ke S (T + Taa = 2-T5) (or 1= 210 N1y

storage tank bottom volume, i=N

line — 1

Togio = TableValue {Table 1

Ty ) note:when changing Nvalue, change also 10 here

= -U- (5D aH e A (T = T ) * Meors €5 Tosns =

®

foump = PUMP (Togo Toorourasq Ol values (previous time) for convergence
Testosos= TableValue (Table 1'; line = 1; Tooe  }

= RESIST (T, }

Tanos = TableValue (Table 1'; line = 1; T.,' ) recovers previous Tau

Towe = Tawo .
P Vo G [T’} = e Gp o (Tr = Tan) * Prosise = U+ (Ta = Ton)

at
ENerGoons = EnerGoonsan * Presie © J5507 3505 ©™ KN

ENeIGY sonsion: = TableValue (Table T line — 1; ‘Energyoons )

at
I R R N L O R i L

ENergyoian = TableValue (Table 1'; line — 1; Energy,, )

Mea

1,

pump

c,

o

Tio = (e = e - (s Ta v (1= fump ) To)) e by - 22

foump ) Cp -

Figure 4.11.5 — EES Formatted Equations window for the DHW solar system example.
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4.11 — DHW solar system with thermal storage stratification

Chapter 4 — Distributed and combined modelling examples

The resistance electrical consumption and the solar collector contribution are also calculated,
as done in example 3.5. For the energy gained in the solar collectors:

EnergYSOI = EnergYSol,old + fpump * Mcol * Cp * (Tcol,out - Tlo) * At (4.11.6)

Figure 4.11.6 shows the storage tank temperature evolution in different volumes, as well as the
auxiliary tank temperature. Temperatures in the storage tank have a large spatial variation,
which exceeds 20°C during the nighttime. During sunshine hours there is circulation in the
collectors and in the storage tank, with much closer temperature values (due to water mixing).
Figure 4.11.7 compares the collector inlet (same as storage tank bottom) and outlet temperature
evolution. The temperature at the top of the storage tank is always very close to the collector
outlet temperature.

The consumption temperature (auxiliary tank temperature) is very stable, with values between
53 and 55°C; thermal stratification leads to a higher temperature at the storage top, increasing
the auxiliary tank inlet temperature and decreasing its energy consumption.
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Figure 4.11.6 — Temperatures in the storage tank and auxiliary tank for the DHW solar system example.
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Figure 4.11.7 — Collector inlet and outlet temperatures for the DHW solar system example.
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Besides the collector inlet and outlet temperature evolution, Figure 4.11.8 represents the pump
factor. It is equal to 1 (there is collector circulation) during most of the sunshine hours. In the
early morning period, between 8:45 and 9:30, the pump switches on and off several times, due
to low solar radiation and very close inlet and outlet temperatures. This could be avoided by
imposing circulation (pump switching on) with a larger temperature difference (outlet-inlet).
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T [QC] 52 Tcons b | fpump
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Figure 4.11.8 — Collector inlet and outlet temperatures and pump factor for the DHW solar system example.

Figure 4.11.9 shows the electrical resistance consumption. Due to the higher auxiliary tank inlet
temperature the electrical consumption is smaller, and due to the lower inlet collector
temperature, collector efficiency is higher, as well as solar contribution to water heating.
Without thermal stratification the total water heat input was equal to 10.307 kWh and the solar
contribution was equal to 67%; with thermal stratification the total water heat input is equal to
10.365 kWh and the solar contribution is equal to 73%.

2000 0,025
Presist [VW] V
resis Energycons=2,831 [KWh| e e
1500 - 0,02
Energys,=7,534 [kWh]
1000 0,015
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Figure 4.11.9 — Energy and water consumption for the DHW solar system example.
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Chapter 4 — Distributed and combined modelling examples
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